Skip to main content
Log in

Electron Transfer Studies of Ruthenium(II) Complexes with Biologically Important Phenolic Acids and Tyrosine

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The ruthenium(II) complexes having 2,2′-bipyridine and phenanthroline derivatives are synthesized and characterized. The photophysical properties of these complexes at pH 12.5 are studied. The electron transfer reaction of biologically important phenolic acids and tyrosine are studied using absorption, emission and transient absorption spectral techniques. Semiclassical theory is applied to calculate the rate of electron transfer between ruthenium(II) complexes and biologically important phenolic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ozyürek M, Güngör N, Baki S, Güclü K, Apak R (2012) Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Anal Chem 84:8052–8059

    Article  PubMed  Google Scholar 

  2. Bani D, Bencini A (2012) Developing ROS scavenging agents for pharmacological purposes: recent advances in design of manganese-based complexes with anti-inflammatory and anti- nociceptive activity. Curr Med Chem 19:4431–4444

    Article  CAS  PubMed  Google Scholar 

  3. Mubarak A, Swinny EE, Ching SYL, Jacob SR, Lacey K, Hodgson JM, Croft KD, Considine MJ (2012) Polyphenol composition of plum selections in relation to total antioxidant capacity. J Agric Food Chem 60:10256–10262

    Article  CAS  PubMed  Google Scholar 

  4. Vassallo N (2008) Polyphenols and health: new and recent advances. Nova Science Publishers, Incorporated

    Google Scholar 

  5. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621

    Article  CAS  Google Scholar 

  6. Charles DJ (2012) Antioxidant properties of spices. Springer, Herbs and Other Sources

    Google Scholar 

  7. Costentin C, Louault C, Robert M, Savéant J-M (2009) The electrochemical approach to concerted proton–electron transfers in the oxidation of phenols in water. Proc Natl Acad Sci 106:18143–18148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beloborodova N, Bairamov I, Olenin A, Shubina V, Teplova V, Fedotcheva N (2012) Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. J Biomed Sci 19:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song N, Stanbury DM (2012) Oxidation of phenol by tris(1,10-phenanthroline)osmium(III). Inorg Chem 51:4909–4911

    Article  CAS  PubMed  Google Scholar 

  11. Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244

    Article  CAS  Google Scholar 

  12. Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V (2007) Photochemistry and photophysics of coordination compounds: ruthenium. In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds I. Springer, Berlin Heidelberg, pp. 117–214

    Chapter  Google Scholar 

  13. Balzani V, Juris A (2001) Photochemistry and photophysics of Ru(II)-polypyridine complexes in the bologna group. From early studies to recent developments. Coord Chem Rev 211:97–115

    Article  CAS  Google Scholar 

  14. Baudin HB, Davidsson J, Serroni S, Juris A, Balzani V, Campagna S, Hammarström L (2002) Ultrafast energy transfer in binuclear ruthenium–osmium complexes as models for light-harvesting antennas. J Phys Chem A 106:4312–4319

    Article  CAS  Google Scholar 

  15. Badjić JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) A molecular elevator. Science 303:1845–1849

    Article  PubMed  Google Scholar 

  16. Swarnalatha K, Rajkumar E, Rajagopal S, Ramaraj R, Banu IS, Ramamurthy P (2011) Proton coupled electron transfer reaction of phenols with excited state ruthenium(II) – polypyridyl complexes. J Phys Org Chem 24:14–21

    Article  CAS  Google Scholar 

  17. Rajkumar E, Rajagopal S, Ramamurthy P, Vairamani M (2009) Photophysics of ruthenium(II) complexes carrying amino acids in the ligand 2,2′-bipyridine and intramolecular electron transfer from methionine to photogenerated Ru(III). Inorg Chim Acta 362:1629–1636

    Article  CAS  Google Scholar 

  18. Swarnalatha K, Rajkumar E, Rajagopal S, Ramaraj R, Lu Y-L, Lu K-L, Ramamurthy P (2005) Photoinduced electron transfer reactions of ruthenium(II) complexes containing 2,2′-bipyridine-4,4′-dicarboxylic acid with phenols: steric and charge effects. J Photochem Photobiol A Chem 171:83–90

    Article  CAS  Google Scholar 

  19. Rajendran T, Thanasekaran P, Rajagopal S, Gnanaraj GA, Srinivasan C, Ramamurthy P, Venkatachalapathy B, Manimaran B, Lu K-L (2001) Steric effects in the photoinduced electron transfer reactions of ruthenium(II)-polypyridine complexes with 2,6-disubstituted phenolate ions. Phys Chem Chem Phys 3:2063–2069

    Article  CAS  Google Scholar 

  20. Thanasekaran P, Rajagopal S, Srinivasan C (1998) Photoredox reactions of tris(2,2′-bipyrazine)-, tris(2,2′-bipyrimidine)- and tris(2,3-bis[2-pyridyl]pyrazine)ruthenium(II) cations with phenolate ions in aqueous acetonitrile. J Chem Soc Faraday Trans 94:3339–3344

    Article  CAS  Google Scholar 

  21. Thanasekaran P, Rajendran T, Rajagopal S, Srinivasan C, Ramaraj R, Ramamurthy P, Venkatachalapathy B (1997) Marcus inverted region in the photoinduced electron transfer reactions of ruthenium(II) − polypyridine complexes with phenolate ions. J Phys Chem A 101:8195–8199

    Article  CAS  Google Scholar 

  22. Rajendran T, Rajagopal S, Srinivasan C, Ramamurthy P (1997) Micellar effect on the photoinduced electron-transfer reactions of ruthenium(II)-polypyridyl complexes with phenolate ions. Effect of Cetyltrimethylammonium cHloride. J Chem Soc Faraday Trans 93:3155–3160

    Article  CAS  Google Scholar 

  23. Rajagopal S, Gnanaraj GA, Mathew A, Srinivasan C (1992) Excited state electron transfer reactions of tris(4,4′-dialkyl-2,2′-bipyridine)ruthenium(II) complexes with phenolate ions: structural and solvent effects. J Photochem Photobiol A Chem 69:83–89

    Article  CAS  Google Scholar 

  24. Bronner C, Wenger OS (2011) Kinetic isotope effects in reductive excited-state quenching of Ru(2,2′-bipyrazine)3 2+ by phenols. J Phys Chem Lett 3:70–74

    Article  Google Scholar 

  25. Nomrowski J, Wenger OS (2015) Photoinduced PCET in ruthenium–phenol systems: thermodynamic equivalence of Uni- and bidirectional reactions. Inorg Chem 54:3680–3687

    Article  CAS  PubMed  Google Scholar 

  26. Styring S, Sjöholm J, Mamedov F (2012) Two tyrosines that changed the world: interfacing the oxidizing power of photochemistry to water splitting in photosystem II. Biochim Biophys Acta 1817:76–87

    Article  CAS  PubMed  Google Scholar 

  27. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 a. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  28. Yu Y, Lv X, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ, Wang J, Lu Y (2015) Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. J Am Chem Soc 137:4594–4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muthu Mareeswaran P, Rajkumar E, Sathish V, Rajagopal S (2014) Electron transfer reactions of ruthenium(II)–bipyridine complexes carrying tyrosine moiety with quinones. Luminescence 29:754–761

    Article  Google Scholar 

  30. Ramanathan S, Ramdass A, Rajkumar E, Rajagopal S (2015) Photoinduced electron transfer reactions of ruthenium(II) phenanthroline complexes with dimethylaniline in aqueous and micellar media. J Fluoresc 25:147–157

    Article  Google Scholar 

  31. Sjodin M, Ghanem R, Polivka T, Pan J, Styring S, Sun L, Sundstrom V, Hammarstrom L (2004) Tuning proton coupled electron transfer from tyrosine: a competition between concerted and step-wise mechanisms. Phys Chem Chem Phys 6:4851–4858

    Article  Google Scholar 

  32. Ramanathan S, Ramdass A, Rajkumar E, Rajagopal S (2015) Micellar effect on the photophysics of heteroleptic ruthenium(II)–phenanthrolinedisulfonato complexes. Luminescence. doi:10.1002/bio.2917

    Google Scholar 

  33. Muthu Mareeswaran P, Babu E, Rajagopal S (2013) Optical recognition of anions by ruthenium(II)-bipyridine-calix[4]arene system. J Fluoresc 23:997–1006

    Article  CAS  Google Scholar 

  34. Muthu Mareeswaran P, Babu E, Sathish V, Kim B, Woo SI, Rajagopal S (2014) p-sulfonatocalix[4]arene as a carrier for curcumin. New J Chem 38:1336–1345

    Article  CAS  Google Scholar 

  35. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edition, Springer

  36. Connors KA (1987) Binding constants: the measurement of molecular complex stability. John Wiley & Sons, Ltd, Chichester, U.K.

    Google Scholar 

  37. Upadhyay SP, Pissurlenkar RRS, Coutinho EC, Karnik AV (2007) Furo-fused BINOL based crown as a fluorescent chiral sensor for enantioselective recognition of phenylethylamine and ethyl ester of valine. J Organomet Chem 72:5709–5714

    Article  CAS  Google Scholar 

  38. Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes. Academic, London

    Google Scholar 

  39. Pal AK, Hanan GS (2014) Design, synthesis and excited-state properties of mononuclear Ru(II) complexes of tridentate heterocyclic ligands. Chem Soc Rev 43:6184–6197

    Article  CAS  PubMed  Google Scholar 

  40. Shimidzu T, Iyoda T, Izaki K (1985) Photoelectrochemical properties of bis(2,2'-bipyridine)(4,4'-dicarboxy-2,2'-bipyridine)ruthenium(II) chloride. J Phys Chem 89:642–645

    Article  CAS  Google Scholar 

  41. Fecenko CJ, Meyer TJ, Thorp HH (2006) Electrocatalytic oxidation of tyrosine by parallel rate-limiting proton transfer and multisite electron - proton transfer. J Am Chem Soc 128:11020–11021

    Article  CAS  PubMed  Google Scholar 

  42. Li C, Hoffman MZ, Pizzocaro C, Maihot G, Bolte M (1998) Ground-state interactions between ruthenium(II) − diimine complexes and phenol and monochlorophenols in aqueous solution. Inorg Chem 37:3078–3082

    Article  CAS  Google Scholar 

  43. Concepcion JJ, Brennaman MK, Deyton JR, Lebedeva NV, Forbes MDE, Papanikolas JM, Meyer TJ (2007) Excited-state quenching by proton-coupled electron transfer. J Am Chem Soc 129:6968–6969

    Article  CAS  PubMed  Google Scholar 

  44. Kuss-Petermann M, Wolf H, Stalke D, Wenger OS (2012) Influence of donor–acceptor distance variation on photoinduced electron and proton transfer in rhenium(I)–phenol dyads. J Am Chem Soc 34:12844–12854

    Article  Google Scholar 

  45. Rajkumar E, Rajagopal S (2008) Photoinduced electron transfer reaction of tris(4,4′-dicarboxyl-2,2′-bipyridine)ruthenium(II) ion with organic sulfides. Photochem Photobiol Sci 7:1407–1414

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Hammitt R, Lutterman DA, Joyce LE, Thummel RP, Turro C (2008) Ru(II) complexes of new tridentate ligands: unexpected high yield of sensitized 1O2. Inorg Chem 48:375–385

    Article  Google Scholar 

  47. Zanarini S, Ciana LD, Marcaccio M, Marzocchi E, Paolucci F, Prodi L (2008) Electrochemistry and electrochemiluminescence of [Ru(II)-tris(bathophenanthroline-disulfonate)]4− in aprotic conditions and aqueous buffers. J Phys Chem B 112:10188–10193

    Article  CAS  PubMed  Google Scholar 

  48. Ciana LD, Zanarini S, Perciaccante R, Marzocchi E, Valenti G (2010) Neutral and dianionic Ru(II) bathophenanthrolinedisulfonate complexes: a route to enhance electrochemiluminescence performance in aqueous media. J Phys Chem C 114:3653–3658

    Article  Google Scholar 

  49. Ito A, Kang Y, Saito S, Sakuda E, Kitamura N (2012) Photophysical and photoredox characteristics of a novel tricarbonyl rhenium(I) complex having an arylborane-appended aromatic diimine ligand. Inorg Chem 51:7722–7732

    Article  CAS  PubMed  Google Scholar 

  50. Barbara PF, Meyer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168

    Article  CAS  Google Scholar 

  51. Balzani V (2001) Electron transfer in chemistry: catalysis of electron transfer, heterogenous systems, gas-phase systems, volume 4, Wiley-VCH

  52. Closs GL, Miller JR (1988) Intramolecular long-distance electron transfer in organic molecules. Science 240:440–447

    Article  CAS  PubMed  Google Scholar 

  53. Yoshimura A, Uddin MJ, Amasaki N, Ohno T (2001) Low quantum yields of electron-transfer reaction of photoexcited Ru(bpydc)3 4− with Co(tpy)2 3+ and methyl Viologen2+ (bpydc:2,2′-bipyridine-4,4′-dicarboxylate and tpy:2,2′:6′,2″-terpyridine). J Phys Chem A 105:10846–10853

    Article  CAS  Google Scholar 

  54. Schrauben JN, Cattaneo M, Day TC, Tenderholt AL, Mayer JM (2012) Multiple-site concerted proton–electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory. J Am Chem Soc 134:16635–16645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eslami AC, Pasanphan W, Wagner BA, Buettner GR (2010) Free radicals produced by the oxidation of gallic acid: an electron paramagnetic resonance study. Chem Central J 4:15–18

    Article  Google Scholar 

  56. Severino JF, Goodman BA, Kay CWM, Stolze K, Tunega D, Reichenauer TG, Pirker KF (2009) Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations. Free Radic Biol Med 46:1076–1088

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Prof. S. Rajagopal thanks UGC, New Delhi for sanctioning UGC-BSR Faculty and UGC Emeritus Fellowships. A. Rajeswari thanks UGC, New Delhi and the Management of Fatima College, Madurai for sanctioning permission to avail the benefits of Faculty Development Programme (FDP). A. Ramdass is the recipient of UGC Meritorious fellowship under the Basic Scientific Resear;ch (BSR) Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seenivasan Rajagopal.

Electronic supplementary material

ESM 1

(DOC 2780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeswari, A., Ramdass, A., Muthu Mareeswaran, P. et al. Electron Transfer Studies of Ruthenium(II) Complexes with Biologically Important Phenolic Acids and Tyrosine. J Fluoresc 26, 531–543 (2016). https://doi.org/10.1007/s10895-015-1738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1738-3

Keywords

Navigation