Skip to main content

Advertisement

Log in

Optical Recognition of Anions by Ruthenium(II)-Bipyridine-Calix[4]Arene System

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The two t-butylcalix[4]arene attached ruthenium(II)-bipyridine complexes (Rubc2 and Rubc3) has been synthesized and the anion recognition studies have been carried out using emission techniques. The binding of anions, which are sensed by the complexes, are studied by UV-visible and emission techniques. The complex Rubc2 recognizes the Cl, H2PO4 and AcO anions. The complex Rubc3 recognizes the Br and AcO anions. The AcO quenches the emission intensity of both two complexes but the other anion increases the emission intensity of the complexes. The excited state lifetime and transient absorption studies were carried out the AcO facilitates non radiative pathway. The other anions stabilize the excited state and facilitate the radiative pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Duke RM, Veale EB, Pfeffer FM, Krugerc PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev 39:3936–3953

    Article  PubMed  CAS  Google Scholar 

  2. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  PubMed  Google Scholar 

  3. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  4. Li X, Wu Y-D, Yang D (2008) α-aminoxy acids: new possibilities from foldamers to anion receptors and channels. Acc Chem Res 41:1428–1438

    Article  PubMed  CAS  Google Scholar 

  5. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  6. Ashcroft FM (2000) Ion channels and disease. Academic, San Diego

    Google Scholar 

  7. Jentsch TJ, Hubner CA, Fuhrmann JC (2004) Ion channels: function unravelled by dysfunction. Nat Cell Biol 6:1039–1047

    Article  PubMed  CAS  Google Scholar 

  8. Zang L, Wei D, Wang S, Jiang S (2012) A phenolic Schiff base for highly selective sensing of fluoride and cyanide via different channels. Tetrahedron 68:636–641

    Article  CAS  Google Scholar 

  9. Bhaumik C, Maity D, Das S, Baitalik S (2012) Synthesis, structural characterization, solvatochromism, and ion-binding studies of a ditopic receptor based on 2-(4-[2,2′:6′,2″]terpyridin-4′-yl-phenyl)-1H-phenanthro[9,10-d] imidazole (tpy-HImzphen) unit. RSC Adv 2:2581–2594

    Article  CAS  Google Scholar 

  10. Kirk KL (1991) Biochemistry of the Halogens and Inorganic Halides. Plenum Press, New York

    Book  Google Scholar 

  11. Hruska K, Teitlebaum S (1995) Renal osteodystrophy. New Engl J Med 333:166–175

    Article  PubMed  CAS  Google Scholar 

  12. Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14:S19–S24

    Article  PubMed  Google Scholar 

  13. Zhu W, Huang X, Guo Z, Wu X, Yu H, Tian H (2012) A novel NIR fluorescent turn-on sensor for the detection of pyrophosphate anion in complete water system. Chem Commun 48:1784–1786

    Article  CAS  Google Scholar 

  14. Kooijman SLAM (2000) Dynamic energy and mass budgets in biological systems, 2nd edn. Cambridge University Press, UK

    Book  Google Scholar 

  15. Zhou XB, Chan WH, Lee AWM (2011) Ratiometric fluorescence sensor for detection of polyphosphate anions by sensor-ensemble method in aqueous solution. Tetrahedron Lett 52:5431–5434

    Article  CAS  Google Scholar 

  16. Motomizu S, Li ZH (2005) Trace and ultratrace analysis methods for the determination of phosphorus by flow-injection techniques. Talanta 66:332–340

    Article  PubMed  CAS  Google Scholar 

  17. Harrison RM (1983) Pollution: causes effects and control. The Royal Society of Chemistry, London

    Google Scholar 

  18. Olszowy HA, Rossiter J, Hegarty J, Geoghegan P (1998) Background levels of bromide in human blood. J Anal Toxicol 22:225–230

    Article  PubMed  CAS  Google Scholar 

  19. Mayeno AN, Curran AJ, Roberts RL, Foote CS (1989) Eosinophils preferentially use bromide to generate halogenating agents. J Biol Chem 264:5660–5668

    PubMed  CAS  Google Scholar 

  20. Olson KR (2003) Poisoning and Drug Overdose, 4th Ed, McGraw-Hill

  21. Mahapatra AK, Roy J, Sahoo P, Mukhopadhyay SK, Chattopadhyay A (2012) Carbazole-thiosemicarbazone-Hg(II) ensemble-based colorimetric and fluorescence turn-on toward iodide in aqueous media and its application in live cell imaging. Org Biomol Chem 10:2231–2236

    Article  PubMed  CAS  Google Scholar 

  22. El-Balloulia AO, Zhang Y, Barlow S, Marder SR, Al-Sayah MH, Kaafarani BR (2012) Fluorescent detection of anions by dibenzophenazine-based sensors. Tetrahedron Lett 53:661–665

    Article  Google Scholar 

  23. Gale PA, Garcia-Garrido SE, Garric J (2008) Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem Soc Rev 37:151–190

    Article  PubMed  CAS  Google Scholar 

  24. Caltagirone C, Gale PA (2009) Anion receptor chemistry: highlights from 2007. Chem Soc Rev 38:520–563

    Article  PubMed  CAS  Google Scholar 

  25. Gale PA, Quesada R (2006) Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord Chem Rev 250:3219–3244

    Article  CAS  Google Scholar 

  26. Amendola V, Esteban-Comez D, Fabbrizzi L, Licchelli M (2006) What anions do to N-H-containing receptors. Acc Chem Res 39:343–353

    Article  PubMed  CAS  Google Scholar 

  27. Juwarker H, Suk JM, Jeong KS (2010) Indoles and related heterocycles. Top Heterocycl Chem 24:177–204

    Article  CAS  Google Scholar 

  28. Anzenbacher P Jr (2010) Pyrrole-based anion sensors, part II: fluorescence, luminescence, and electrochemical sensors. Top Heterocycl Chem 24:237–265

    Article  CAS  Google Scholar 

  29. Bowman-James K (2005) Alfred Werner revisited: the coordination chemistry of anions. Acc Chem Res 38:671–678

    Article  PubMed  CAS  Google Scholar 

  30. Steed JW, Atwood JL (2000) Supramolecular chemistry. John Wiley & Sons, Ltd, New York

    Google Scholar 

  31. Muthu Mareeswaran P, Prakash M, Subramaniyan V, Rajagopal S (2012) Recognition of aromatic amino acids and proteins with I-sulfonatocalix[4]arene—a luminescence and theoretical approach. J Phys Org Chem 25:1217–1227

    Article  CAS  Google Scholar 

  32. Muthu Mareeswaran P, Maheshwaran D, Babu E, Rajagopal S (2012) Binding and fluorescence resonance energy transfer (FRET) of ruthenium(II)-bipyridine-calixarene system with proteins—experimental and docking studies. J Fluoresc 22:1345–1356

    Article  PubMed  Google Scholar 

  33. Gutsche CD (2008) Calixarenes—An Introduction, 2nd Edition, RSC Publishing

  34. Anzenbacher P Jr (2010) Pyrrole-based anion sensors, part I: colorimetric sensors. Top Heterocycl Chem 24:205–235

    Article  CAS  Google Scholar 

  35. Beer PD, Drew MGB, Hazlewood C, Hesek D, Hodacova J, Stokes SE (1993) Dicarboxylate anion recognition by a redox-responsive ditopic bis(coba1ticinium)calix[4]arene receptor molecule. J Chem Soc Chem Commun 229–231

  36. Danil de Namor AF, Shehab M (2004) Recognition of biologically and environmentally important phosphate anions by calix[4]pyrrole: thermodynamic aspects. J Phys Chem A 108:7324–7330

    Article  CAS  Google Scholar 

  37. Danil de Namor AF, Shehab M, Abbas I, Withams MV, Zvietcovich Guerra J (2006) New insights on anion recognition by isomers of a calix pyrrole derivative. J Phys Chem B 110:12653–12659

    Article  PubMed  CAS  Google Scholar 

  38. Danil de Namor AF, Abbas I, Hammud HH (2007) A new calix[4]pyrrole derivative and its anion (fluoride)/cation (mercury and silver) recognition. J Phys Chem B 111:3098–3105

    Article  PubMed  Google Scholar 

  39. Danil de Namor AF, Abbas I, Hammud HH (2006) Anion complexation by calix[3]thieno[1]pyrrole: the medium effect. J Phys Chem B 110:2142–2149

    Article  PubMed  CAS  Google Scholar 

  40. Mandolini L (2000) Ungaro R calixarenes in action. Imperial College Press, London

    Book  Google Scholar 

  41. Hamon M, Menand M, LeGac S, Luhmer M, Dalla V, Jabin I (2008) Calix[6]tris(thio)ureas: heteroditopic receptors for the cooperative binding of organic ion pairs. J Org Chem 73:7067–7071

    Article  PubMed  CAS  Google Scholar 

  42. Dinares I, Garcia de Miguel C, Mesquida N, Alcalde E (2009) Bis(imidazolium)-calix[4]arene receptors for anion binding. J Org Chem 74:482–485

    Article  PubMed  CAS  Google Scholar 

  43. Beer PD, Drew MGB, Nam KC (1997) A new carboxylate anion selective cobaltocenium calix[4]arene receptor. Chem Commun 107–108

  44. Beer PD (2005) Anion sensing by metal-based receptors. Top Curr Chem 255:125–162

    CAS  Google Scholar 

  45. Sun SS, Lees AJ (2002) Transition metal based supramolecular systems: synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors. Coord Chem Rev 230:171–192

    Article  CAS  Google Scholar 

  46. Fillaut JL, Andries J, Perruchon J, Desvergne JP, Toupet L, Fadel L, Zouchoune B, Saillard JY (2007) Alkynyl ruthenium colorimetric sensors: optimizing the selectivity toward fluoride anion. Inorg Chem 46:5922–5932

    Article  PubMed  CAS  Google Scholar 

  47. Kalyanasundaram K (1992) Photochemistry of polypyridine and phorphyrin compelxes. Academic Press Ltd, London

    Google Scholar 

  48. Mishra A, Vajpayee V, Kim H, Lee MH, Jung H, Wang M, Stang PJ, Chi KW (2012) Self-assembled metalla-bowls for selective sensing of multi-carboxylate anions. Dalton Trans 41:1195–1201

    Article  PubMed  CAS  Google Scholar 

  49. Elmes RBP, Gunnlaugsson T (2010) Luminescence anion sensing via modulation of MLCT emission from a naphthalimide-Ru(II)-polypyridyl complex. Tetrahedron Lett 51:4082–4087

    Article  CAS  Google Scholar 

  50. Beer PD (1998) Transition-metal receptor systems for the selective recognition and sensing of anionic guest species. Acc Chem Res 31:71–80

    Article  CAS  Google Scholar 

  51. Kitchen JA, Boyle EM, Gunnlaugsson T (2012) Synthesis, structural characterisation and luminescent anion sensing studies of a Ru(II)polypyridyl complex featuring an aryl urea derivatised 2,2′-bpy auxiliary ligand. Inorg Chim Acta 381:236–242

    Article  CAS  Google Scholar 

  52. Beer PD, Cadman J (1999) Phosphate anion binding and luminescent sensing in aqueous solution by ruthenium(II) bipyridyl polyaza receptors. New J Chem 23:347–349

    Article  CAS  Google Scholar 

  53. Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107:3780–3799

    Article  PubMed  CAS  Google Scholar 

  54. Szemes F, Hesek D, Chen Z, Dent SW, Drew MGB, Goulden AJ, Graydon AR, Grieve A, Mortimer RJ, Wear T, Weightman JS, Beer PD (1996) Synthesis and characterization of novel acyclic, macrocyclic, and calix[4]arene ruthenium(II) bipyridyl receptor molecules that recognize and sense anions. Inorg Chem 35:5868–5879

    Article  CAS  Google Scholar 

  55. Rajkumar E, Rajagopal S (2008) Photoinduced electron transfer reaction of tris(4,4¢-dicarboxyl-2,2¢-bipyridine)ruthenium(II) ion with organic sulfides. Photochem Photobiol Sci 7:1407–1414

    Article  PubMed  CAS  Google Scholar 

  56. Swarnalatha K, Rajkumar E, Rajagopal S, Ramaraj R, Lu YL, Lu KL, Ramamurthy P (2005) Photoinduced electron transfer reactions of ruthenium(II) complexes containing 2,2′-bipyridine-4,4′-dicarboxylic acid with phenols-Steric and charge effects. J Photochem Photobiol A Chem 171:83–90

    Article  CAS  Google Scholar 

  57. Rajkumar E, Rajagopal S, Ramamurthy P, Vairamani M (2009) Photophysics of ruthenium(II) complexes carrying amino acids in the ligand 2,2′-bipyridine and intramolecular electron transfer from methionine to photogenerated Ru(III). Inorg Chim Acta 362:1629–1636

    Article  CAS  Google Scholar 

  58. Haider JM, Chavarot M, Weidner S, Sadler I, Williams RM, De Cola L, Pikramenou Z (2001) Metallocyclodextrins as building blocks in noncovalent assemblies of photoactive units for the study of photoinduced intercomponent processes. Inorg Chem 40:3912–3921

    Article  PubMed  CAS  Google Scholar 

  59. Harriman A, Hissler M, Jost P, Wipff G, Ziessel R (1999) Conformational control of intramolecular electron transfer in calix[4]diquinones and their cationic complexes. J Am Chem Soc 121:14–27

    Article  CAS  Google Scholar 

  60. Connors KA (1987) Binding constants: the measurement of stability. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  61. Upadhyay SP, Pissurlenkar RRS, Coutinho EC, Karnik AV (2007) Furo-fused BINOL based Ccrown as a fluorescent chiral sensor for enantioselective recognition of phenylethylamine and ethyl Eester of valine. J Org Chem 72:5709–5714

    Article  PubMed  CAS  Google Scholar 

  62. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer Academic press, New York

    Book  Google Scholar 

  63. Miedlar K, Das PK (1982) Tris(2,2′-bipyridine)ruthenium(II)-sensitized photooxidation of phenols. Environmental effects on electron transfer yields and kinetics. J Am Chem Soc 104:7462–7469

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We sincerely thank Prof. P. Ramamurthy, National Center for Ultrafast Process, University of Madras, Taramani, Chennai for his help in time resolved measurements. We sincerely thank Dr. Vairamani, IICT, Hyderabad for his help in HR-MS. We thank UGC-UPE for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seenivasan Rajagopal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthu Mareeswaran, P., Babu, E. & Rajagopal, S. Optical Recognition of Anions by Ruthenium(II)-Bipyridine-Calix[4]Arene System. J Fluoresc 23, 997–1006 (2013). https://doi.org/10.1007/s10895-013-1226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1226-6

Keywords

Navigation