Skip to main content
Log in

Single Chemosensor for Double Analytes: Spectrophotometric Sensing of Cu2+ and Fluorogenic Sensing of Al3+ Under Aqueous Conditions

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

(E)-N-((8-Hydroxy-1,2,3,5,6,7-hexahydropyrido-[3,2,1-ij]-quinolin-9-yl)methylene)-4-tert-butyl -benzhydrazide has been developed as a single, dual-functional chemosensor. The chemosensor showed a good selectivity and sensitivity toward to Al3+ and Cu2+ at a low detection limit, respectively. Theoretical calculations have also been carried out to understand the configuration of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Wang ML, Meng GW, Huang Q (2014) Iodeosin-based fluorescent and colorimetric sensing for Ag+, Hg2+, Fe3+, and further for halide ions in aqueous solution. RSC Adv 4:8055–8058

    Article  CAS  Google Scholar 

  2. Wang M, Liu XM, Lu HZ, Wang HM (2015) Z.H. Qin.: highly selective and reversible chemosensor for Pd2+ detected by fluorescence, colorimetry, and test paper. Appl. Mater. Interfaces 7:1284–1289

    CAS  Google Scholar 

  3. Maity SB, Banerjee S, Sunwoo K, Kim JS, Bharadwaj PK (2015) A Fluorescent Chemosensor for Hg2+ and Cd2+ Ions in Aqueous Medium under Physiological pH and Its Applications in Imaging Living Cells. Inorg Chem 54:3929–3936

    Article  PubMed  Google Scholar 

  4. Çağlar Y, Gümrükçüoğlu N, Saka ET, Ocak M, Kantekin H, Ümmühan O (2012) Phthalocyanine -based fluorescent chemosensor for the sensing of Zn (II) in dimethyl sulfoxide-acetonitrile. J Incl Phenom Macrocycl Chem 72:443–447

    Article  Google Scholar 

  5. Costero AM, Andreu R, Martínez-Máñez R, Sancenón F, Soto J (2003) A fluorescen chemo-sensor able to distinguish between ionic and covalent mercury compounds. J Incl Phenom Macrocycl Chem 46:121–124

    Article  CAS  Google Scholar 

  6. Erdemir S, Kocyigit O, Malkondu S (2015) Fluorogenic recognition of Zn2+, Al3+ and F ions by a new multi-analyte chemosensor based bisphenol a-quinoline. Fluoride 25:719–727

    Article  CAS  Google Scholar 

  7. Perl DP (1980) A. R. Brody.: Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299

    Article  PubMed  CAS  Google Scholar 

  8. Mittal SK, Sharma R, Sharma M, Singh N, Singh J, Kaur N, Chhibber M (2014) Voltam -metry of nanoparticle-coupled imine linkage-based receptors for sensing of Al(III) and Co(II) ions. J Appl Electrochem 49:1239–1251

    Article  Google Scholar 

  9. Hatai J, Samanta M, Krishna VSR, Pal S, Bandyopadhyay S (2013) The importance of water exclusion: an effective design strategy for detection of Al3+ ions with high sensitivity. RSC Adv 3:22572–22579

    Article  CAS  Google Scholar 

  10. Lee SA, You GR, Choi YW, Jo HY, Kim AR, Kim INS-J, Kim Y Kim C (2014) A new multifunctional Schiff base as a fluorescence sensor for Al3+ and a colorimetric sensor for CN in aqueous media: an application to bioimaging. Dalton Trans 43:6650–6659

  11. Li TR, Fang R B.D Wang, Y.L. Shao, J. Liu, S.T. Zhang, Z.Y. Yang (2014) Simple coumarin as a turn-on fluorescence sensor for Al(III) ions. Dalton Trans 43:2741–2743

  12. Kumar J, Sarma MJ, Phukan P (2015) D. K. Das.: a new simple Schiff base fluorescence “on” sensor for Al3+ and its living cell imaging. Dalton Trans 44:4576–4581

    Article  PubMed  CAS  Google Scholar 

  13. Yang MP, Meng WF, Liu XJ, Su N, Zhou J, Yang BQ (2014) The importance of water exclusion: an effective design strategy for detection of Al3+ ions with high sensitivity A selective colorimetric and fluorescent chemosensor for Cu2+ in living cells. RSC Adv 4:22288–22293

    Article  CAS  Google Scholar 

  14. Sarkar D, Pramanik AK, Mondal TK (2015) A novel coumarin based molecular switch for dual sensing of Zn(II) and Cu(II). RSC Adv 5:7647–7653

    Article  CAS  Google Scholar 

  15. Huang CY, Jhong Y, Chir JL, Wu AT (2014) A quinoline derivative as an efficient sensor to detect selectively Al3+ ion. J Fluoresc 24:991–994

    Article  PubMed  CAS  Google Scholar 

  16. Anbu S, Ravishankaran R, Silva MFCG, Karande AA, Pombeiro AJL (2014) A. J. L. Pombeiro.: differentially selective chemosensor with fluorescence off–on responses on Cu2+ and Zn2+ ions in aqueous media and applications in pyrophosphate sensing, live cell imaging, and cytotoxicity. Inorg Chem 53:6655–6664

    Article  PubMed  CAS  Google Scholar 

  17. Mashraqui SH, Khan T, Chandiramani M, Betkar R, Poonia K (2010) Anthracene -tethered aminomethyl oxadiazole chemosensor: a probe offering selective chromo- and fluorogenic signalings for targeting Cu(II). J Incl Phenom Macrocycl Chem 67:361–367

    Article  CAS  Google Scholar 

  18. Rossi L, Lombardo M, Ciriolo M (2004) G. Rotilio.: mitochondrial dysfunction in neuro -degenerative diseases associated with copper imbalance. Neurochem Res 29:493–504

    Article  PubMed  CAS  Google Scholar 

  19. Gou C, Qin SH, Wu HQ, Wang Y, Luo J (2011) X.Y. Liu.: a highly selective chemo -sensor for Cu2+ and Al3+ in two different ways based on salicylaldehyde Schiff. Inorg Chem Commun 14:1622–1625

    Article  CAS  Google Scholar 

  20. Chen YT, Mi YS, Xie QF, Xiang JN, Hong LF, Luo XB, Xia SR (2013) A new off–on chemosensor for Al3+ and Cu2+ in two different systems based on a rhodamine B derivative. Anal Methods 5:4818–4823

    Article  CAS  Google Scholar 

  21. Samanta S, Goswami S, Hoque MN, Ramesh A, Das G (2014) An aggregation-induced emission (AIE) active probe renders Al(III) sensing and tracking of subsequent interaction with DNA. Chem Commun 50:11833–11836

    Article  CAS  Google Scholar 

  22. Kima H, Raoa BA, Jeonga JW, Mallick S, Kang SM, Choi JS, Lee CS, Son YA (2015) A highly selective dual-channel Cu2+ and Al3+ chemodosimeter in aqueous systems: Sensing in living cells and microfluidic flows. Sensors Actuators B Chem 210:173–182

    Article  Google Scholar 

  23. Chemate S, Sekar N (2015) Highly sensitive and selective chemosensors for Cu2+ and Al3+ based on photoinduced electron transfer (PET) mechanism. RSC Adv 5:27282–27289

    Article  CAS  Google Scholar 

  24. Wang JF, Li YB, Patel NG, Zhang G, Zhou D (2014) Y. Pang.: selective photosensiti -zation through an AND logic response: optimization of the pH and glutathione response of activatable photosensitizers. Chem Commun 50:12258–12261

    Article  CAS  Google Scholar 

  25. Cui MH, Liu Q, Fei Q, Fei YQ, Liu YM, Shan HY, Feng GD, Huan YF (2015) A novel UV-visible chemosensor based on the 8-hydroxyquinoline derivative for copper ion detection. Anal Methods 7:4252–4256

    Article  CAS  Google Scholar 

  26. A. Kuwar, R. Patil, A. Singh, S. K. Sahoo, J. Marekd, N. Singh (2015) A two-in-one dual channel chemosensor for Fe3+ and Cu2+ with nanomolar detection mimicking the IMPLICATION logic gate. J Mater Chem C, 3, 453–460

  27. Hu QP, Liu YL, Li ZQ, Wen RZ, Gao YA, Bei YL Zhu Z (2014) A new rhodamine -based dual chemosensor for Al3+ and Cu2+. Tetrahedron Lett 55:4912–4916

  28. Karak MD, Lohar S, Sahana A, Guha S, Banerjee A, Da D (2012) An Al3+ induced green luminescent fluorescent probe for cell imaging and naked eye detection. Anal Methods 4,:1906–1908

    Article  Google Scholar 

  29. Liao ZC, Yang ZY, Li Y, Wang BD, Zhou QX (2013) A simple structure fluorescent chemosensor for high selectivity and sensitivity of aluminum ions. Dyes Pigments 97:124–128

    Article  CAS  Google Scholar 

  30. Gao W, Yang YT, Huo FJ, Yin CX, Xu M, Zhang YB J.B Chao, S. Jin, Zhang (2014) An ICT colorimetric chemosensor and a non-ICT fluorescent chemosensor for the detection copper ion. Sensors Actuators B 193(294–300)

  31. Yuan ZL, Yang XQ, Wang L, Huang JD, Wei G (2014) Efficient synthesis of involving nitrogen-oxygen donor macrocyclic compoundsby microwave-assisted witting reaction. RSC Adv 4:42211–42214

    Article  CAS  Google Scholar 

  32. Z. L. Yuan, X.M. Shen, Huang J D (2015) Syntheses, crystal structures and antimicrobial activities of Cu(II), Ru(II), and Pt(II) compounds with an anthracene-containing tripodal ligand. RSC Adv. 5, 10521–10528

  33. Yuan ZL, Wang L, Shen XM, Huang JD, Wei G (2015) Copper(II) and platinum(II) compounds with pyrene-appended dipicolylamine ligand: syntheses, crystal structures and biological evaluation. J Incl Phenom Macrocycl Chem 82:135–143

    Article  CAS  Google Scholar 

  34. Lim S, Seo J, Park SY (2006) Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readou. J Am Chem Soc 128:14542–14547

    Article  PubMed  CAS  Google Scholar 

  35. Chen W, Xing Y (2011) Y. Pang A highly selective pyrophosphate sensor based on ESIPT turn-on in water. Org Lett 13:1362–1365

    Article  PubMed  CAS  Google Scholar 

  36. Ameer-Beg S, Ormson SM, Brown RG, Matousek P, Towrie M, Nibbering ETJ, Foggi P (2001) F. V. R. Neuwahl.: ultrafast measurements of excited state intramolecular proton transfer (ESIPT) in room temperature solutions of 3-hydroxyflavone and derivatives. J Phys Chem A 105:3709–3718

    Article  CAS  Google Scholar 

  37. Kar C, Adhikari MD, Ramesh A Das G (2013) NIR- and FRET-based sensing of Cu2+ and S2− in physiological conditions and in live cells. Inorg Chem 52:743–752

  38. G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee, A. R. Kim, I. Noh, C. Kim (2014) A single chemosensor for multiple analytes: fluorogenic detection of Zn2+ and OAc ions in aqueous solution, and an application to bioimaging. New. J. Chem. 38, 2587–2594

  39. Hatai J, Samanta M, Krishna VSR, Pal S, Bandyopadhyay S (2013) The importance of water exclusion: an effective design strategy for detection of Al3+ ions with high sensitivity. RSC Advance 3:22572–22579

  40. Yu F, Zhang W, Li P, Xing Y, Tong L, Ma J Tang B (2009) Cu2+-selective naked-eye and fluorescent probe: its crystal structure and application in bioimaging. Analyst 134:1826–1833

  41. Kim H, Na YJ, Park GJ, Lee JJ, Kim YS, Lee SY, Kim C (2014) A novel selective colorimetric chemosensor for Cu2+ in aqueous solution. Inorg Chim Commun 49:68–71

    Article  Google Scholar 

  42. Grynkiewcz G, Poenie M (1985) R. Y. Tsein.: a new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    Google Scholar 

  43. Park GJ, Na YJ, Jo HY, Lee SA, Kim C (2014) A colorimetric organic chemo-sensor for Co2+ in a fully aqueous environment. Dalton Trans 43:6618–6622

    Article  PubMed  CAS  Google Scholar 

  44. Han TY, Feng X, Tong B, Shi JB, Chen L, Zhic JG (2012) Y.P. Dong.: a novel “turn -on” fluorescent chemosensor for the selective detection of Al3+ based on aggregation -induced emission. Chem Commun 48:416–418

    Article  CAS  Google Scholar 

  45. Das S, Sahana A, Banerjee A, Lohar S, Safin DA, Babashkina MG, Bolte M, Garcia Y, Hauli I, Mukhopadhyay SK (2013) D. Das.: ratiometric fluorescence sensing and intracellular imaging of Al3+ ions driven by an intramolecular excimer formation of a pyrimidine–pyrene scaffold. Dalton Trans 42:4757–4763

    Article  PubMed  CAS  Google Scholar 

  46. Tian H, Li B, Zhu JL, Wang HP, Li YR, Xu J, Wang JW, Wang W, Sun ZH, Liu WS, Huang XG, Yan XH, Wang Q, Yao XJ Tang Y (2012) Two selective fluorescent chemosensors for cadmium ions in 99 % aqueous solution: the end group effect on the selectivity, DFT calculations and biological applications. Dalton Trans 41:2060–2065

  47. Li TR, Fang R, Wang BD, Shao YL, Liu J, Zhang ST (2014) Z.Y. Yang.: a simple coumarin as a turn-on fluorescence sensor for Al(III) ions. Dalton Trans 43:2741–2743

    Article  PubMed  CAS  Google Scholar 

  48. Chattopadhyay B, Moirangthem A, Basu A, Marek J Chattopadhyay P (2012) A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging. Analyst 137:3975–3981

  49. Li ZX, Zhao WY, Li XY, Zhu YY, Liu CM, Wang LN, Yu MM, Wei LH, Tang MS, Zhang HY (2012) 1,8-Naphthyridine-Derived Ni2+/Cu2+-Selective Fluorescent Chemosensor with Different Charge Transfer Processses. Inorg Chem 51:12444–12449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Natural Science Foundation of China (Grant No. 81360471), the‘Chunhui’ plan project of Ministry of Education. (No. [2012]600, Z2014095) and the Education Department of Guizhou Province(QJHRCTDZ-2012-03), Science and Technology Department of Guizhou Province (No.2014G Z 71255) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-li Yuan or Gang Wei.

Electronic supplementary material

ESM 1

(DOCX 5.66 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yuan, Zl., Yu, Gq. et al. Single Chemosensor for Double Analytes: Spectrophotometric Sensing of Cu2+ and Fluorogenic Sensing of Al3+ Under Aqueous Conditions. J Fluoresc 26, 43–51 (2016). https://doi.org/10.1007/s10895-015-1710-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1710-2

Keywords

Navigation