Skip to main content

Advertisement

Log in

Fluorogenic Recognition of Zn2+, Al3+ and F Ions by a New Multi-Analyte Chemosensor Based Bisphenol A-Quinoline

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new available multi-analyte fluorescent sensor based on a bisphenol A-quinoline conjugate (BFQ) was synthesized in two facile steps and was characterized systematically. BFQ exhibited an effectively selective and sensitive recognition toward Zn2+and Al3+ cations in EtOH-H2O (v/v = 9/1) over other cations and F anion in CH3CN over other anions with remarkably enhanced fluorescent intensities. According to the quantum yield (Φ) measurements, BFQ-Zn2+, BFQ-Al3+ and BFQ-F complexes showed 16, 22 and 30 times higher Φ values than BFQ, respectively. The complexation properties of BFQ with Zn2+, Al3+ and F ions were also examined by 1H NMR titration experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dong Z, Le X, Zhou P, Dong C, Ma J (2014) Sequential recognition of zinc ion and hydrogen sulfide by a new quinoline derivative with logic gate behavior. R Soc Chem Adv 4:18270–18277

    CAS  Google Scholar 

  2. Dong Z, Le X, Zhou P, Dong C, Ma J (2014) An “off–on–off” fluorescent probe for the sequential detection of Zn2+ and hydrogen sulfide in aqueous solution. New J Chem 38:1802–1808

    Article  CAS  Google Scholar 

  3. Hatai J, Pal S, Jose GP, Sengupta T, Bandyopadhyay S (2012) A single molecule multi chemosensor differentiates among Zn2+, Pb2+ and Hg2+: modulation of selectivity by tuning of solvents. R Soc Chem Adv 2:7033–7036

    CAS  Google Scholar 

  4. Malkondu S, Erdemir S (2014) A triphenylamine based multi-analyte chemosensor for Hg2+ and Cu2+ ions in MeCN/H2O. Tetrahedron 70:5494–5498

    Article  CAS  Google Scholar 

  5. Bergand JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  Google Scholar 

  6. Xieand XM, Smart TG (1991) A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349:521–524

    Article  Google Scholar 

  7. Torrado A, Walkupand GK, Imperiali B (1998) Exploiting polypeptide motifs for the design of selective Cu (II) Ion chemosensors. J Am Chem Soc 120:609–610

    Article  CAS  Google Scholar 

  8. Jin T, Lu J, Nordberg M (1998) Neuro Toxicol 19:529–536

    CAS  Google Scholar 

  9. Bhalla V, Kumar R, Kumar M (2013) Pentaquinone based probe for nanomolar detection of zinc ions: Chemosensing ensemble as an antioxidant. Dalton Trans 42:975–980

    Article  CAS  PubMed  Google Scholar 

  10. Delhaizeand E, Ryan PR (1995) Alumium toxicity and tolerance in plants. Plant Physiol 107:315–321

    Google Scholar 

  11. Andrasi E, Pali N, Molnar Z, Kosel S (2005) Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis 7(273):284

    Google Scholar 

  12. Nayak P (2002) Aluminum: impacts and disease. Environ Res 89:101–115

    Article  CAS  PubMed  Google Scholar 

  13. Berthon G (2002) Aluminum speciation in relation to aluminum bioavailability, metabolism and toxicity. Coord Chem Rev 228:319–341

    Article  CAS  Google Scholar 

  14. Gupta VK, Yola ML, Atar N, Solak AO, Uzun L, Ustundag Z (2013) Electrochemically modified sulfisoxazolenano film on glassy carbon for determination of cadmium (II) in water samples. Electrochim Acta 105:149–156

    Article  CAS  Google Scholar 

  15. Gupta VK, Singh AK, Singh P, Upadhyay A (2014) Electrochemical determination of perchlorate ion by polymeric membrane and coated graphite electrodes based on zinc complexes of macrocyclic ligands. Sensors Actuators B 199:201–209

    Article  CAS  Google Scholar 

  16. Norouzi P, Gupta VK, Larijani B, Rasoolipour S, Faridbod F, Ganjali MR (2015) Coulometric differential FFT admittance voltammetry determination of amlodipine in pharmaceutical formulation by nano-composite electrode. Talanta 131:577–584

    Article  CAS  PubMed  Google Scholar 

  17. Iyengar V, Wolttlez J (1988) Trace elements in human clinical specimens: evaluation of literature data to identify reference values, trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem Wash DC 34:474–481

    CAS  Google Scholar 

  18. Townsend AT, Miller KA, McLean S, Aldous S (1998) The determination of copper, zinc, cadmium and lead in urine by high resolution ICP-MS. J Anal At Spectrom 13:1213–1219

    Article  CAS  Google Scholar 

  19. Alici O, Erdemir S (2015) A cyanobiphenyl containing fluorescence “turn on” sensor for Al3+ ion in CH3CN–water. Sensors Actuators B Chem 208:159–163

    Article  CAS  Google Scholar 

  20. Erdemir S, Malkondu S (2015) A simple triazole-based “turn on” fluorescent sensor for Al3+ ion in MeCN–H2O and F ion in MeCN. J Luminescense 158:401–406

    Article  CAS  Google Scholar 

  21. Erdemir S, Malkondu S (2013) A novel “turn on” fluorescent sensor based on hydroxy-triphenylamine for Zn2+and Cd2+ ions in MeCN. Sens. Actuators B Chem 188:1225–1229

    Article  CAS  Google Scholar 

  22. Tayadea K, Sahoo SK, Bondhopadhyayd B, Bhardwajc VK, Singhc N, Basud A, Bendrea R, Kuwara A (2014) Highly selective turn-on fluorescent sensor for nanomolar detection of biologically important Zn2+ based on isonicotinohydrazide derivative: application in cellular imaging. Biosens Bioelectron 61:429–433

    Article  Google Scholar 

  23. Zhang G, Wang L, Cai X, Zhang L, Yu J, Wang A (2013) A new diketopyrrolopyrrole (DPP) derivative bearing boronate group as fluorescent probe for fluoride ion. Dyes Pigm 98:232–237

    Article  CAS  Google Scholar 

  24. Ghosh K, Kar D, Fröhlich R, Chattopadhyay AP, Samaddera A, Khuda-Bukhsh AR (2013) O-tert-butyldiphenyl silyl coumarin and dicoumarol: a case toward selective sensing of F ions in organic and aqueous environments. Analyst 138:3038–304

    Article  CAS  PubMed  Google Scholar 

  25. Luxami V, Kumar S (2007) Colorimetric and ratiometric fluorescence sensing of fluoride ions based on competitive intra- and intermolecular proton transfer. Tetrahedron Lett 48:3083–3087

    Article  CAS  Google Scholar 

  26. Im HG, Kim HY, Choia MG, Chang SK (2013) Reaction-based dual signaling of fluoride ions by sulfonates. Org Biomol Chem 11:2966–2971

    Article  CAS  PubMed  Google Scholar 

  27. Carton RJ (2006) Fluoride. Review of the 2006 United States National Resarch Council Report: Fluoride in Driking. Water 39:163–172

    CAS  Google Scholar 

  28. Arhima MH, Gulatiand OP, Sharma SC (2004) The effect of Pycnogenol on fluoride induced Rat kidney lysosomal damage in vitro. Phytother Res 18:244–246

    Article  CAS  PubMed  Google Scholar 

  29. Matsui H, Morimoto M, Horimotoand K, Nishimura Y (2007) Some characteristics of fluoride-induced cell death in rat thymocytes: cytotoxicity of sodium fluoride. Toxicol In Vitro 21:1113–1120

    Article  CAS  PubMed  Google Scholar 

  30. Horowitz HS (2003) The 2001 CDC recommendations for using fluoride to prevent and control dental caries in the United States. J Public Health Dent 63:3–8

    Article  PubMed  Google Scholar 

  31. Ayooband S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487

    Article  Google Scholar 

  32. Bassin E, Wypij D, Davisand R, Mittleman M (2006) Age-specific fluoride exposure in drinking water and osteosarcoma (United States). Cancer Causes Control 17:421–428

    Article  PubMed  Google Scholar 

  33. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the inter-action of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  34. Sharma D, Sahoo SK, Bera RK, Kamal R (2013) Spectroscopic and computational study of a naphthalene derivative as colorimetric and fluorescent sensor for bioactive anions. J Fluoresc 23:387–392

    Article  CAS  PubMed  Google Scholar 

  35. Sharma D, Moirangthem A, Sahoo SK, Basu A, Roy SM, Pati RK, Kumar SKA, Nandre JP, Patil UD (2014) Anion selective chromogenic and fluorogenic chemosensor and its application in breast cancer live cell imaging. RSC Adv 4:41446–41452

    Article  CAS  Google Scholar 

  36. Sivakumar R, Reena V, Ananthi N, Babu M, Anandan S, Velmathi S (2010) Colorimetric and fluorescence sensing of fluoride anions with potential salicylaldimine based schiff base receptors. Spectrochim Acta A Mol Biomol Spectrosc 75:1146–1151

    Article  PubMed  Google Scholar 

  37. Peng X, Wu Y, Fan J, Tian M, Han K (2005) Colorimetric and ratiometric fluorescence sensing of fluoride: tuning selectivity in proton transfer. J Org Chem 70:10524–10531

    Article  CAS  PubMed  Google Scholar 

  38. Erdemir S, Kocyigit O, Alici O, Malkondu S (2013) ‘Naked-eye’ detection of F ions by two novel colorimetric receptors. Tetrahedron Lett 54:613–617

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank the Research Foundation of Selcuk University (SUBAP) for financial support of this work.

Compliance with Ethical Standards

We state compliance with ethical standards of the present study, below.

Funding

This study was funded by SUBAP.

Conflict of Interest

We declare that they have no conflict of interest.

Research involving Human Participants and/or Animals

This study does not contain any studies with human participants performed by any of the authors.

Informed consent

For this study, any informed consent form was not obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Erdemir.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdemir, S., Kocyigit, O. & Malkondu, S. Fluorogenic Recognition of Zn2+, Al3+ and F Ions by a New Multi-Analyte Chemosensor Based Bisphenol A-Quinoline. J Fluoresc 25, 719–727 (2015). https://doi.org/10.1007/s10895-015-1557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1557-6

Keywords

Navigation