Skip to main content

Advertisement

Log in

Anthracene-tethered aminomethyl oxadiazole chemosensor: a probe offering selective chromo- and fluorogenic signalings for targeting Cu(II)

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new optical chemosensor featuring anthracene as a fluorophore and an aminomethyl oxadiazole moiety as a bidentate chelate has been synthesized. From photophysical studies, we find the probe to offer remarkably selective chromo- and fluorogenic signaling responses towards biologically and environmentally significant Cu2+. In the presence of Cu2+, fluorescence is quenched to the extent of 95%, while the absorbance due to the anthracene chromophore is nearly completely bleached out. On the other hand, Li+, Na+, K+, Ba2+, Ca2+, Zn2+, Mg2+, Cd2+, Co2+, Ni2+, Ag+, Pb2+ and Hg2+ even at 10 times higher concentration than Cu2+ do not cause detectable photophysical perturbations. The stability constants, logK for Cu2+ were calculated to be 4.36 and 4.76 on the basis of spectrophotometric and fluorimetric titrations, respectively. However, logKs for other metal ions are too low (<0.1) to pose any interferences in the optical detection of Cu2+. Though, not fully defined, the uncommon phenomenon of the absorbance bleaching by Cu2+ is tentatively explained by invoking the involvement of non-covalent anthracene-Cu2+ complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schraderr, T., Hamilton, A.D. (eds.): Functional Synthetic Receptors. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  2. Desvergne, J.P., Czarnik, A.W.: Chemosensors of Ion and Molecule Recognition. Kluwer, Dordrecht (1997)

    Google Scholar 

  3. Beer, P.D., Gale, P.A.: Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516 (2001)

    Article  CAS  Google Scholar 

  4. De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Article  Google Scholar 

  5. Harris, E.D.: Copper and iron: a landmark connection of two essential metals. J. Trace Elem. Exp. Med. 14, 207–210 (2001)

    Article  Google Scholar 

  6. Saltman, P.D., Strause, L.G.: The role of trace minerals in osteoporosis. J. Am. Coll. Nutr. 12, 384–390 (1993)

    CAS  Google Scholar 

  7. Frieden, E., Osaki, S., Kobayashi, H.: Copper proteins and oxygen; correlations between structure and function of the copper oxidases. J. Gen. Physiol. 49, 213–252 (1965)

    Article  CAS  Google Scholar 

  8. Sarkar, B.: Transport of copper. Met. Ions Biol. Syst. 12, 233–281 (1981)

    CAS  Google Scholar 

  9. Fuller, C.W.: Electrochemical Atomization for Atomic Absorption Spectroscopy. Royal Society of Chemistry, London (1977)

    Google Scholar 

  10. Fassel, V.A., Kniseley, R.N.: Inductively coupled plasma-optical emission analytical spectrometry. Anal. Chem. 46, 75–80 (1974)

    Article  Google Scholar 

  11. Herzog, G.D.W.M.: Application of disorganized monolayer films on gold electrodes to the prevention of surfactant inhibition of the voltammetric detection of trace metals via anodic stripping of under potential deposits: detection of copper Arrigan. Anal. Chem. 75, 319–323 (2003)

    Article  CAS  Google Scholar 

  12. Zen, J.M., Wang, H.F., Kumar, A.S., Yang, H.H., Dharuman, V.: Preconcentration and electroanalysis of copper(II) in ammoniacal medium on nontronite/cellulose acetate modified electrodes. Electroanalysis 14, 99–105 (2002)

    Article  CAS  Google Scholar 

  13. Valeur, B.: Molecular Fluorescence. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  14. Amendola, V., Fabbrizzi, I., Forti, F., Pallavicini, P., Poggi, A., Sacchi, D., Tagleitti, A.: Light-emitting molecular devices based on transition metals. Coord. Chem. Rev. 250, 273–299 (2006)

    Article  CAS  Google Scholar 

  15. Wolfbeis, O.S., Bohmer, M., Durkop, A., Enderlein, L., Gruber, M., Klimant, I., Krause, C., Kurner, J., Liebsch, G., Lin, Z., Oswald, B., Kraayenhof, R., Visser, A.J.W.G., Gerritsen, H.C., Wu, M.: Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical Physical and Life Sciences. Springer, Berlin (2002)

    Google Scholar 

  16. De Silva, A. P., De Silva, S. A.: Fluorescent signalling crown ethers; switching onoff fluorescence by alkali metal ion recognition and binding in situ. J. Chem. Soc. Chem. Commun. 1709–1710 (1986)

  17. Kramer, R.: Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive. Angew. Chem. Int. Ed. 37, 772–773 (1998)

    Article  CAS  Google Scholar 

  18. Roy, B.C., Chandra, B., Hromas, D., Mallik, S.: Synthesis of new, pyrene-containing, metal-chelating lipids and sensing of cupric ions. Org. Lett. 5, 11–14 (2003)

    Article  CAS  Google Scholar 

  19. Zheng, Y., Orbulescu, J., Ji, X., Andreopoulos, F.M., Pham, S.M., Leblanc, R.M.: Development of fluorescent film sensors for the detection of divalent copper. J. Am. Chem. Soc. 125, 2680–2686 (2003)

    Article  CAS  Google Scholar 

  20. Wu, Q., Anslyn, E.V.: Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu(II). J. Am. Chem. Soc. 126, 14682–14683 (2004)

    Article  CAS  Google Scholar 

  21. Kaur, S., Kumar, S.: Photoactive chemosensors 4: a Cu2+ protein cavity mimicking fluorescent chemosensor for selective Cu2+ recognition. Tetrahedron Lett. 45, 5081–5085 (2004)

    Article  CAS  Google Scholar 

  22. Bag, B., Bharadwaj, P.K.: Attachment of electron-withdrawing 2, 4-dinitrobenzene groups to a cryptand-based receptor for Cu(II)/H + -specific exciplex and monomer emissions. Org. Lett. 7, 1573–1576 (2005)

    Article  CAS  Google Scholar 

  23. Royzen, M., Dai, Z., Canary, J.W.: Ratiometric displacement approach to Cu(II) sensing by fluorescence. J. Am. Chem. Soc. 127, 1612–1613 (2005)

    Article  CAS  Google Scholar 

  24. Xu, Z., Xiao, Y., Qian, X., Cui, J.N., Cui, D.: Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org. Lett. 7, 889–892 (2005)

    Article  CAS  Google Scholar 

  25. Zeng, L., Miller, E.W., Pralle, A., Isacoff, E.Y., Chang, C.-J.: A selective turn-on fluorescent sensor for imaging copper in living cells. J. Am. Chem. Soc. 128, 10–11 (2006)

    Article  CAS  Google Scholar 

  26. Jun, E.J., Won, H.N., Kim, J.S., Lee, K.-H., Yoon, J.: Unique blue shift due to the formation of static pyrene excimer: highly selective fluorescent chemosensor for Cu2+. Tetrahedron Lett. 47, 4577–4580 (2006)

    Article  CAS  Google Scholar 

  27. Wen, Z.-C., Yang, R., He, H., Jiang, Y.-B.: A highly selective charge transfer fluoroionophore for Cu2+. Chem. Commun. 106–107 (2006)

  28. Weng, Y.-Q., Yue, F., Zhong, Y.-R., Ye, B.-H.: A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino. Inorg. Chem. Commun. 10, 443–446 (2007)

    Article  CAS  Google Scholar 

  29. Que, E.L., Chang, C.J.: A smart magnetic resonance contrast agent for selective copper sensing. J. Am. Chem. Soc. 128, 15942–15943 (2006)

    Article  CAS  Google Scholar 

  30. Kovbasyuk, L., Kramer, R.: A selective fluorescent sensor for Cu2+ and its immobilization on CPG beads. Inorg. Chem. Commun. 9, 586–590 (2006)

    Article  CAS  Google Scholar 

  31. He, X., Liu, H., Li, Y., Wang, S., Wang, N., Xiao, J., Xu, X., Zhu, D.: Gold nanoparticle-based fluorometric and colorimetric sensing of copper (II) ions. Adv. Mater. 17, 2811–2815 (2005)

    Article  CAS  Google Scholar 

  32. Kubo, K.: Mori A.: PET fluoroionophores for Zn2+ and Cu2+: complexation and fluorescence behavior of anthracene derivatives having diethylamine, N-methylpiperazine and N, N-bis(2-picolyl)amine units. J. Mater. Chem. 15, 2902–2907 (2005)

    Article  CAS  Google Scholar 

  33. Wu, J.-S., Wang, P.-F., Zhang, X.-H., Wu, S.-K.: Novel fluorescent sensor for detection of Cu(II) in aqueous solution. Spectrochim. Acta Part A 65, 749–752 (2006)

    Article  Google Scholar 

  34. Bolletta, F., Garelli, A., Montalti, M., Prodi, L., Romano, S.: Synthesis, photophysical characterization and metal ion binding properties of new ligands containing anthracene chromophores. Inorg. Chim. Acta 357, 4078–4084 (2004)

    Article  CAS  Google Scholar 

  35. De Santis, G., Fabbrizzi, L., Licchelli, M., Mangano, C., Sacchi, D., Sardone, N.: A fluorescent chemosensor for the copper(II) ion. Inorg. Chim. Acta 257, 69–76 (1997)

    Article  Google Scholar 

  36. Zeng, Q., Cai, P., Li, Z., Qina, J., Tang, B. Z.: An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide. Chem. Commun. 1094–1096 (2008)

  37. Mashraqui, S.H., Kumar, S., Vashi, D.: Synthesis, cation-binding and optical spectral studies of photoemissive benzothiazole crown ethers. J. Incl. Phenom. Macrocycl. Chem. 48, 125 (2004)

    Article  CAS  Google Scholar 

  38. Mashraqui, S.H., Sundaram, S., Bhasikuttan, A.C.: New ICT probes: synthesis and photophysical studies of N-phenylaza-15-crown-5 aryl/heteroaryl oxadiazoles under acidic condition and in the presence of selected metal ions. Tetrahedron 63, 1680–1688 (2007)

    Article  CAS  Google Scholar 

  39. Mashraqui, S.H., Khan, T., Sundaram, S., Betkar, R., Chandiramani, M.: A new intramolecular charge transfer receptor as a selective ratiometric ‘off-on’ sensor for Zn2+. Tetrahedron Lett. 48, 8487–8490 (2007)

    Article  CAS  Google Scholar 

  40. Mashraqui, S.H., Sundaram, S., Khan, T., Ghadigaonkar, S., Poonia, K.: New PCT probes featuring N-phenylmonoaza-18-crown-6 and aryl/pyridyl oxadiazoles: optical spectral studies of solvent effects and selected metal ions. J. Incl. Phenom. Macrocycl. Chem. 62, 81–90 (2008)

    Article  CAS  Google Scholar 

  41. Tang, X.-L., Peng, X.-H., Dou, W., Mao, J., Zheng, J.-R., Qin, W.-W., Liu, W.-S., Chang, J., Yao, X.-J.: Design of a Semirigid Molecule as a Selective fluorescent Chemosensor for Recognition of Cd(II). Org. lett. 10, 3653–3656 (2008)

    Article  CAS  Google Scholar 

  42. He, Z., Craig, D. C., Colbran, S. B.: Structures and properties of 6-aryl substituted tris(2-pyridylmethyl)amine transition metal complexes. J. Chem. Soc. Dalton Trans. 4224–4235 (2002)

  43. Collman, J.P., Zhong, M., Zhang, C., Costazo, S.: Catalytic activities of Cu(II) complexes with nitrogen-chelating bidentate ligands in the coupling of imidazoles with arylboronic acids. J. Org. Chem. 66, 7892–7897 (2001)

    Article  CAS  Google Scholar 

  44. Creaven, B.S., Mahon, M.F., McGinley, J., Moore, A.-M.: Copper(II) complex of a tridentate N-donor ligand with unexpected Cu–H interaction. Inorg. Chem. Commun. 9, 231–234 (2006)

    Article  CAS  Google Scholar 

  45. Taki, M., Teramae, S., Nagatomo, S., Tachi, Y., Kitagawa, T., Itoh, S., Fukuzumi, S.: Fine-tuning of copper(I)-dioxygen reactivity by 2-(2-Pyridyl)ethylamine bidentate ligands unusual. J. Am. Chem. Soc. 124, 6367–6377 (2002)

    Article  CAS  Google Scholar 

  46. Incarvito, C., Rheingold, A.L., Qin, C.J., Gavrilova, A.L., Bosnich, B.: Bimetallic reactivity. On the use of oxadiazoles as binucleating ligands. Inorg. Chem. 40, 1386–1390 (2001)

    Article  CAS  Google Scholar 

  47. Nad, S., Pal, H.: Unusual photophysical properties of coumarin-151. J. Phys. Chem. 105, 1097–1106 (2001)

    CAS  Google Scholar 

  48. Klein, G., Kaufmann, D., Schurch, S., Reymond, J.-L.: A fluorescent metal sensor based on macrocyclic chelation. Chem. Commun. 6, 561–562 (2001)

    Article  Google Scholar 

  49. Kumar, S., Singh, P., Kaur, S.: A Cu2+ protein cavity mimicking fluorescent chemosensor for selective Cu2+ recognition: tuning of fluorescence quenching to enhancement through spatial placement of anthracene unit. Tetrahedron 63, 11724–11732 (2007)

    Article  CAS  Google Scholar 

  50. Yorita, H., Otomo, K., Hiramatsu, H., Toyama, A., Miura, T., Takeuchi, H.: Evidence for the cation–π Interaction between Cu2+ and tryptophan. J. Am. Chem. Soc. 130, 15266–15277 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to the B.R.N.S., Government of India for generous financial support and the UGC for providing research fellowship to R. B. and M. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabir H. Mashraqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashraqui, S.H., Khan, T., Chandiramani, M. et al. Anthracene-tethered aminomethyl oxadiazole chemosensor: a probe offering selective chromo- and fluorogenic signalings for targeting Cu(II). J Incl Phenom Macrocycl Chem 67, 361–367 (2010). https://doi.org/10.1007/s10847-009-9717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9717-4

Keywords

Navigation