Skip to main content
Log in

Synthesis and Evaluation of In Vitro DNA/Protein Binding Affinity, Antimicrobial, Antioxidant and Antitumor Activity of Mononuclear Ru(II) Mixed Polypyridyl Complexes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The four novel Ru(II) complexes [Ru(phen)2MAFIP]2+ (1) [MAFIP = 2–(5–(methylacetate)furan–2–yl)–1 H–imidazo[4,5–f] [1, 10]phenanthroline, phen = 1,10–Phenanthroline], [Ru(bpy)2MAFIP]2+ (2) (bpy = 2,2′–bipyridine) and [Ru(dmb)2MAFIP]2+ (3) (dmb = 4,4′–dimethyl–2,2′–bipyridine) and [Ru(hdpa)2MAFIP]2+ (4) (hdpa = 2,2–dipyridylamine) have been synthesized and fully characterized via elemental analysis, NMR spectroscopy, EI–MS and FT–IR spectroscopy. In addition, the DNA–binding behaviors of the complexes 14 with calf thymus DNA were investigated by UV–Vis absorption, fluorescence studies and viscosity measurement. The DNA–binding experiments showed that the complexes 14 interact with CT–DNA through an intercalative mode. BSA protein binding affinity of synthesized complexes was determined by UV/Vis absorption and fluorescence emission titrations. The binding affinity of ruthenium complexes was supported by molecular docking. The photoactivated cleavage of plasmid pBR322 DNA by ruthenium complexes 14 was investigated. All the synthesized compounds were tested for antimicrobial activity by using three Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and three Gram-positive (Micrococcus luteus, Bacillus subtilis and Bacillus megaterium) organisms, these results indicated that complex 3 was more activity compared to other complexes against all tested microbial strains while moderate antimicrobial activity profile was noticed for complex 4. The antioxidant activity experiments show that the complexes exhibit moderate antioxidant activity. The cytotoxicity of synthesized complexes on HeLa cell lines has been examined by MTT assay. The apoptosis assay was carried out with Acridine Orange (AO) staining methods and the results indicate that complexes can induce the apoptosis of HeLa cells. The cell cycle arrest investigated by flow cytometry and these results indicate that complexes 1–4 induce the cell cycle arrest at G0/G1 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chifotides HT, Dunbar KR (2005) Interactions of metal − metal-bonded antitumor active complexes with DNA fragments and DNA. Acc Chem Res 38:146–156

    Article  PubMed  CAS  Google Scholar 

  2. Bednarski PJ, Mackay FS, Sadler PJ (2007) Photoactivatable platinum complexes. Anti Cancer Agents Med Chem 7:75–93

    Article  CAS  Google Scholar 

  3. Dyson PJ, Rose MJ, Fry NL, Marlow R, Hinck L, Mascharak PK (2008) Sensitization of ruthenium nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for light-triggered NO delivery to cellular targets. J Am Chem Soc 130:8834–8846

    Article  Google Scholar 

  4. Hemmert C, Pitié M, Renz M, Gornitzka H, Soulet S, Meunier B (2001) Preparation, characterization and crystal structures of manganese(II), iron(III) and copper(II) complexes of the bis[di-1,1-(2-pyridyl)ethyl] amine (BDPEA) ligand; evaluation of their DNA cleavage activities. J Biol Inorg Chem 6:14–22

    Article  PubMed  CAS  Google Scholar 

  5. Li VS, Choi D, Wang Z, Jimenez LS, Tang M, Kohn H (1996) Role of the C-10 substituent in mitomycin C-1-DNA bonding. J Am Chem Soc 118:2326–2331

    Article  CAS  Google Scholar 

  6. Zuber G, Quada JC, Hecht SM (1998) Sequence selective cleavage of a DNA octanucleotide by chlorinated bithiazoles and bleomycins. J Am Chem Soc 120:9368–9369

    Article  CAS  Google Scholar 

  7. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699

    Article  PubMed  CAS  Google Scholar 

  8. Rosenberg B, Van Camp L, Grimley EB, Thomson AJ (1967) The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J Biol Chem 242:1347–1352

    PubMed  CAS  Google Scholar 

  9. Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66:1–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chen TF, Liu YN, Zheng WJ, Wong YS (2010) Ruthenium polypyridyl complexes that induce mitochondria-mediated apoptosis in cancer cells. Inorg Chem 49:6366–6368

    Article  PubMed  CAS  Google Scholar 

  11. Tan CP, Hu S, Liu J, Ji LN (2011) Nuclear permeable ruthenium(II) beta-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. Eur J Med Chem 46:1555–1563

    Article  PubMed  CAS  Google Scholar 

  12. Tan CP, Ji LN, Xu AL, et al. (2011) Synthesis, structures, cellular uptake and apoptosis-inducing properties of highly cytotoxic ruthenium-norharman complexes. Dalton Trans 40:8611–8621

    Article  PubMed  CAS  Google Scholar 

  13. Che CM, Huang JS (2002) Ruthenium and osmium porphyrin carbene complexes: synthesis, structure, and connection to the metal-mediated cyclopropanation of alkenes. Coord Chem Rev 231:151–164

    Article  CAS  Google Scholar 

  14. Bratsos I, Jedner S, Gianferrara T, Alessio E (2007) Ruthenium anticancer compounds: challenges and expectations. Chimia 61:692–697

    Article  CAS  Google Scholar 

  15. Meng X, Leyva ML, Gaiddon C, et al. (2007) A ruthenium-containing organometallic compound reduces tumor growth through induction of the endoplasmic reticulum stress gene CHOP. Cancer Res 69:5458–5466

    Article  Google Scholar 

  16. Clarke MJ (2003) Ruthenium metallopharmaceuticals. Coord Chem Rev 236:209–233

    Article  CAS  Google Scholar 

  17. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) From bench to bedside-preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1 H-indazole)ruthenate(III)] (KP1019 or FFC14A). J Inorg Biochem 100:891

    Article  PubMed  CAS  Google Scholar 

  18. Venkat Reddy P, Rajender Reddy M, Srishailam A, Praveen Kumar Y, Nagamani C, Deepika N, Nagasuryaprasad K, Singh SS, Satyanarayana S (2015) Design, synthesis, DNA binding affinity, cytotoxicity, apoptosis and cell cycle arrest of Ru(II) polypyridyl complexes. Anal Biochem. doi:10.1016/j.ab.2015.06.015

    PubMed  Google Scholar 

  19. Srishailam A, Praveen KY, Venkat Reddy P, Navaneetha N, Uma V, Surya SS, Satyanarayana S (2014) Cellular uptake, cytotoxicity, apoptosis, DNA-binding, photocleavage and molecular docking studies of ruthenium(II) polypyridyl complexes. J Photochem Photobiol B Biol 132:111–123

    Article  CAS  Google Scholar 

  20. Srishailam A, Gabra NM, Kumar YP, Reddy KL, Shobha Devi C, Kumar DA, Singh SS, Satyanarayana S (2014) Synthesis, characterization; DNA binding and antitumor activity of ruthenium(II) polypyridyl complexes. J Photochem Photobiol B Biol 141:47–58

    Article  CAS  Google Scholar 

  21. Reddy MR, Reddy PV, Kumar YP, Srishailam A, Navaneetha N, Satyanarayana S (2014) Synthesis, characterization, DNA binding, light switch “on and off”, docking studies and cytotoxicity, of ruthenium(II) and cobalt(III) polypyridyl complexes. J Fluoresc 24:803–817

    Article  PubMed  CAS  Google Scholar 

  22. Devi CS, Nagababu P, Venkat Reddy V, Sateesh V, Srishailam A, Satyanarayana S (2014) Synthesis, characterisation, interaction with DNA, cytotoxicity, and apoptotic studies of ruthenium(ii) polypyridyl complexes. Aust J Chem 67:225–233

    CAS  Google Scholar 

  23. Devi CS, Nagababu P, Sumathi N, Deepika N, Reddy PV, Veerababu N, Singh SS, Satyanarayana S (2014) Cellular uptake, cytotoxicity, apoptosis and DNA-binding investigations of Ru(II) complexes. Eur J Med Chem 72:160–169

    Article  Google Scholar 

  24. Gabra NM, Mustafa B, Kumar YP, Devi CS, Srishailam A, Reddy PV, Reddy KL, Satyanarayana S (2014) Synthesis, characterization, DNA binding studies, photocleavage, cytotoxicity and docking studies of ruthenium(II) light switch complexes. J Fluoresc 24:169–181

    Article  PubMed  CAS  Google Scholar 

  25. Devi CS, Anil Kumar D, Singh SS, Gabra N, Deepika N, Praveen Kumar Y, Satyanarayana S (2013) Synthesis, interaction with DNA, cytotoxicity, cell cycle arrest and apoptotic inducing properties of ruthenium(II) molecular “light switch” complexes. Eur J Med Chem 64:410–421

    Article  Google Scholar 

  26. Deepika N, Yata Praveen K, Devi CS, Venkat Reddy P, Srishailam A, Satyanarayana S (2013) Synthesis, characterization, and DNA binding, photocleavage, cytotoxicity, cellular uptake, apoptosis, and on–off light switching studies of Ru(II) mixed-ligand complexes containing 7-fluorodipyrido[3,2-a:20,30-c]phenazine. J Biol Inorg Chem 18:751–766

    Article  PubMed  CAS  Google Scholar 

  27. Srishailam A, Yata PK, Nazar MDG, Venkat Reddy P, Deepika N, Veerababu N, Satyanarayanan S (2013) Synthesis, DNA-binding, cytotoxicity, photo cleavage, antimicrobial and docking studies of Ru(II) polypyridyl complexes. J Fluoresc 23:897–908

    Article  PubMed  CAS  Google Scholar 

  28. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  29. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  30. Yamada M, Tanaka Y, Yoshimato Y, Kuroda S, Shimao I (1992) Synthesis and properties of diamino-substituted dipyrido [3,2-a: 2′,3′-c]phenazine. Bull Chem Soc Jpn 65:1006–1011

    Article  CAS  Google Scholar 

  31. Sullivan BP, Sullivan DJ, Meyer TJ (1978) Mixed phosphine 2,2'-bipyridine complexes of ruthenium. Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  32. Tan LF, Zhang S, Liu XH, Chen YD, Liu XW (2008) Experimental and density functional theory (DFT) studies on the DNA-binding trend and spectral properties of two new Ru(II) complexes: [Ru(L)2(mip)](ClO4)2 (L = 2,9-dmp and 4,7-dmp). J Organomet Chem 693:3387–3395

    Article  CAS  Google Scholar 

  33. Rajendiran V, Murali M, Suresh E, Palaniandavar M, Periasamy VS, Mohammad AA (2008) Non-covalent DNA binding and cytotoxicity of certain mixed-ligand ruthenium(II) complexes of 2,2′-dipyridylamine and diimines. Dalton Trans 16:2157–2170

    Article  PubMed  Google Scholar 

  34. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396

    Article  PubMed  CAS  Google Scholar 

  35. Lakowicz JR, Webber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  PubMed  CAS  Google Scholar 

  36. Record MT, Anderson CF, Lohman TM (1978) Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys 11:103–178

    Article  PubMed  CAS  Google Scholar 

  37. Chaires JB, Dattagupta N, Crothers DM (1982) Self association of daunomycin. Biochemistry 21:3927–3932

    Article  PubMed  CAS  Google Scholar 

  38. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris (phenanthroline) ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 32:2573–2584

    Article  PubMed  CAS  Google Scholar 

  39. Sonboli A, Salehi P, Kanani MR, Nejad-Ebrahimi S (2005) Antibacterial and antioxidant activity and essential oilcomposition of grammosciadium scabridum boiss. From Iran. Z Naturforsch 60:534–538

    CAS  Google Scholar 

  40. Tselepi-Kalouli E, Katsaros N (1989) The interaction of [Ru(NH3)5Cl]2+ and [Ru(NH3)6]3+ ions with DNA. J Inorg Biochem 37:271–282

    Article  PubMed  CAS  Google Scholar 

  41. Darzynkiewicz Z (1990) Chapter 27 differential staining of DNA and RNA in intact cells and isolated cell nuclei with acridine orange. Methods Cell Biol 33:285–298

    Article  PubMed  CAS  Google Scholar 

  42. Gorczyca W, Hotz MA, Lassota P, Traganos F (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808

    Article  PubMed  Google Scholar 

  43. Hawley ST, Hawley GR (2004) Flow Cytometry Protocols, 2nd edn. methods in molecular biology

  44. Diller DJ, Merz Jr KM (2001) High throughput docking for library design and library prioritization. Proteins 43:113–124

    Article  PubMed  CAS  Google Scholar 

  45. Gohlke H, Klebe G (2001) Statistical potentials and scoring functions applied to protein–ligand binding. Curr Opin Struct Biol 11:231–235

    Article  PubMed  CAS  Google Scholar 

  46. Liu XW, Shen YM, Lu JL, Chen YD, Li L, Zhang DS (2010) Synthesis, DNA-binding and photocleavage of “light switch” complexes [Ru(bpy)2(pyip)]2+ and [Ru(phen)2(pyip)]2+. Spectro Chim Acta Part A 77:522–527

    Article  Google Scholar 

  47. Chen M, Li H, Li Q, Xu Z (2010) Luminescence properties of [Ru(bpy)2MDHIP]2+ modulated by the introduction of DNA, copper(II) ion and EDTA. Spectrochim Acta A Mol Biomol Spectrosc 75:1566–1570

    Article  PubMed  Google Scholar 

  48. Mariappan M, Maiya BG (2005) Effects of anthracene and pyrene units on the interactions of novel polypyridylruthenium(II) mixed-ligand complexes with DNA. Eur J Inorg Chem 2005:2164–2173

    Article  Google Scholar 

  49. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither Δ- nor Λ-tris(phenanthro-line) ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31:9319–9324

    Article  PubMed  CAS  Google Scholar 

  50. Barton JK, Raphael AL (1984) Photoactivated stereospecific cleavage of double-helical DNA by cobalt(III) complexes. J Am Chem Soc 106:2466–2468

    Article  CAS  Google Scholar 

  51. Hawkins MJ, Soon-Shiong P, Desaia N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–885

    Article  PubMed  CAS  Google Scholar 

  52. Andre C, Guillaume YC (2004) Anti-coagulant rodenticide binding properties of human serum albumin: a biochromatographic approach. J Chromatogr B Anal Technol Biomed Life Sci 801:221–227

    Article  CAS  Google Scholar 

  53. Li F, Grant Collins J, Richard Keene F (2015) Ruthenium complexes as antimicrobial agents. Chem Soc Rev 44:2529–2542

    Article  PubMed  CAS  Google Scholar 

  54. Hickman JA (1992) Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 11:121–139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the University Grant Commission (UGC), New Delhi, INDIA for providing the BSR (RFSMS) Fellowship as financial assistance and we also grateful to CFRD, Osmania University, Hyderabad, Telangana, INDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayana Sirasani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putta, V.R., Chintakuntla, N., Mallepally, R.R. et al. Synthesis and Evaluation of In Vitro DNA/Protein Binding Affinity, Antimicrobial, Antioxidant and Antitumor Activity of Mononuclear Ru(II) Mixed Polypyridyl Complexes. J Fluoresc 26, 225–240 (2016). https://doi.org/10.1007/s10895-015-1705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1705-z

Keywords

Navigation