Skip to main content

Advertisement

Log in

Physicochemical Characterization and In Vitro Cytotoxic Effect of 3-Hydroxyflavone in a Silver Nanoparticles Complex

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The aim of this work was to characterize the physico-chemical properties of 3-hydroxyflavone (3-HF) in a silver nanoparticles complex (SNPs) using UV–vis and Fluorescence spectroscopy, Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) analysis. One also evaluated its effect on the cell viability and morphology of L929 mouse fibroblast cells in vitro. The contribution of the carrier protein, Bovine Serum Albumin (BSA) to 3-HF properties has also been investigated. 3-HF in BSA/SNPs systems presented no cytotoxic effect in L929 mouse fibroblast cells at any of the tested concentrations. The results are discussed with relevance to the oxidative stress process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rusznyak S, Szent-Gyorgi A (1936) Vitamin P: flavonols as vitamins. Nature 138:27. doi:10.1038/138027a0

    Article  CAS  Google Scholar 

  2. Takahama U (1983) Suppression of photoperoxidation by quercetin and its glycosides in spinach chloroplast. Photochem Photobiol 38:363–367

    Article  CAS  Google Scholar 

  3. Harborne JB (1988) In: Cody V, Middleton E, Harborne JB, Beretz A (eds) Flavonoids in the environment: structure-activity relationship. Alan R. Liss, New York

    Chapter  Google Scholar 

  4. Lamson DW, Brignall MS (2000) Antioxidants and cancer III: quercetin. Altern Med Rev 5:196–208

    CAS  PubMed  Google Scholar 

  5. William RJ, Spencer JS, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  Google Scholar 

  6. Anderson OM, Markham KR (2006) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  7. Sengupta PK, Kasha M (1979) Excited state proton- transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68:382–385

    Article  CAS  Google Scholar 

  8. Wolfbeis OS (1985) In: Schulman SG (ed) Molecular luminescence spectroscopy: methods and applications part I. Wiley, New York

    Google Scholar 

  9. Guharay J, Sengupta B, Sengupta PK (2001) Proteins 43:75

    Article  CAS  PubMed  Google Scholar 

  10. Demchenko AP, Ercelen S, Roshal AD, Klymchenko AS (2002) Pol J Chem 76:1287

    CAS  Google Scholar 

  11. Sytnik A, Gormin D, Kasha M (1994) Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes. Proc Natl Acad Sci U S A 91:11968–11972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sytnik A, Litvinyuk I (1996) Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin. Proc Natl Acad Sci U S A 93:12959–12963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hussain S, Ferguson C (2006) Best evidence topic report. Silver sulphadiazine cream in burns. Emerg Med J 23:929–932

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  PubMed  Google Scholar 

  15. Muangman P, Muangman S, Opasanon S, Keorochana K, Chuntrasakul C (2009) Benefit of hydrocolloid SSD dressing in the outpatient management of partial thickness burns. J Med Assoc Thai 92:1300–1305

    PubMed  Google Scholar 

  16. Caruso DM, Foster KN, Blome-Eberwein SA, Twomey JA, Herndon DN, Luterman A, Silverstein P, Antimarino JR, Bauer GJ (2006) Randomized clinical study of hydrofiber dresssing with silver or silver sulphadiazine in the management of partial thickness burns. J Burn Care Res 27:298–309

    Article  PubMed  Google Scholar 

  17. Pearce ME, Melanko JB, Salem AK (2007) Multifunctional nanorods for biomedical applications. Pharm Res 24:2335–2352

    Article  CAS  PubMed  Google Scholar 

  18. Xiao Y, Gao X (2010) Use of IgY antibodies and semiconductor nanocrystal detection in cancer biomarker quantitation. Biomark Med 4:227–239

    Article  CAS  PubMed  Google Scholar 

  19. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103–225112

    Article  Google Scholar 

  20. Uygur F, Oncul O, Evinc R, Diktas H, Acar A, Ulkur E (2009) Effects of three different topical antibacterial dressings on Acinetobacter baumannii-contaminated full-thickness burns in rats. Burns 35:270–273

    Article  PubMed  Google Scholar 

  21. Muthu MS, Wilson B (2010) Multifunctional radionanomedicine. A novel platforme for effective cancer imaging and therapy. Nanomedicine 5:169–171

    Article  CAS  PubMed  Google Scholar 

  22. Su Y, Qiao S, Yang H, Yang C, Jin Y, Stahr F, Sheng J, Cheng L, Ling C, Lu GQ (2010) Titanate-silica mesostructured nanocables: synthesis, structural analysis and biomedical applications. Nanotechnology 21:065604. doi:10.1088/0957-4484/21/6/065604

    Article  PubMed  Google Scholar 

  23. Sondy I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  Google Scholar 

  24. Kim JS, Kuk E, Nam Yu K et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  25. Wei D et al (2009) The sysnthesis of chitosan-based siver nanoparticles and their antibacterial activity. Carbohydr Res 344:2375–2382

    Article  CAS  PubMed  Google Scholar 

  26. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  27. Guzman MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biol Eng 2–3:104–111

    Google Scholar 

  28. Wong KKY, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? Med Chem Commun 1:125–131

    Article  CAS  Google Scholar 

  29. De Lima R, Seabra AB, Duran N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanioparticles. J Appl Toxicol 32:867–879

    Article  CAS  PubMed  Google Scholar 

  30. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticles—induced oxidative stress and toxicity. BioMed Res Int. doi:10.1155/2013/942916

    PubMed Central  PubMed  Google Scholar 

  31. Matsuo M, Sasaki N, Saga K, Kaneko T (2005) Cytotoxicity of flavonoids towards cultured normal human cells. Biol Pharm Bull 28:253–259

    Article  CAS  PubMed  Google Scholar 

  32. Voicescu M, Nistor CL, Meghea A (2015) Insights into the antioxidant activity of some flavones on silver nanoparticles using a chemiluminescence method. J Lumin 157:243–248. doi:10.1016/j.jlumin.2014.08.058

    Article  CAS  Google Scholar 

  33. Angelescu DG, Vasilescu M, Somoghi R, Donescu D, Teodorescu VT (2010) Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloids Surf A Physicochem Eng Asp 366:155–162

    Article  CAS  Google Scholar 

  34. Craciunescu O, Moldovan M, Moisei M, Trif M (2013) Liposomal formulation of chondroitin sulfate enhances its antioxidant and anti-inflammatory potential in L929 fibroblast cell line. J Liposome Res 23:145–153

    Article  CAS  PubMed  Google Scholar 

  35. Voicescu M, Ionescu S, Angelescu DG (2012) Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J Nanoparticle Res 14:1174. doi:10.1007/s11051-012-1174-0

    Article  Google Scholar 

  36. Voicescu M, Angelescu DG, Ionescu S, Teodorescu VS (2013) Spectroscopic analysis of the riboflavin—serum albumins interaction on silver nanoparticles. J Nanoparticle Res 15:1555. doi:10.1007/s11051-013-1555-z

    Article  Google Scholar 

  37. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-RU-TE-2012-3-0055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Voicescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voicescu, M., Craciunescu, O., Moldovan, L. et al. Physicochemical Characterization and In Vitro Cytotoxic Effect of 3-Hydroxyflavone in a Silver Nanoparticles Complex. J Fluoresc 25, 1215–1223 (2015). https://doi.org/10.1007/s10895-015-1608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1608-z

Keywords

Navigation