Skip to main content
Log in

Multifunctional Nanorods for Biomedical Applications

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Multifunctional nanorods have shown significant potential in a wide range of biomedical applications. Nanorods can be synthesized by a top down or bottom-up approach. The bottom-up approach commonly utilizes a template deposition methodology. A variety of metal segments can easily be incorporated into the nanorods. This permits high degrees of chemical and dimensional control. High aspect-ratio nanorods have a large surface area for functionalization. By varying the metal segments in the nanorods, spatial control over the binding of functional biomolecules that correspond with the unique surface chemistry of the metal segment can be achieved. Functionalized multicomponent nanorods are utilized in applications ranging from multiplexing, protein sensing, glucose sensing, imaging, biomolecule-associated nanocircuits, gene delivery and vaccinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal. Sugar assisted evolution of mono- and bimetallic nanoparticles. Colloids Surf., A Physicochem. Eng. Asp. 264:133–138 (2005).

    CAS  Google Scholar 

  2. M. A. El-Sayed. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34:257–264 (2001).

    PubMed  CAS  Google Scholar 

  3. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 75:790 (1979).

    CAS  Google Scholar 

  4. B. Wildt, P. Mali, and P. C. Searson. Electrochemical template synthesis of multisegment nanowires: Fabrication and protein functionalization. Langmuir. 22:10528–10534 (2006).

    PubMed  CAS  Google Scholar 

  5. C. C. Huang, Z. Yang, and H. T. Chang. Synthesis of dumbbell-shaped Au–Ag Core-Shell nanorods by seed-mediated growth under alkaline conditions. Langmuir. 20:6089–6092 (2004).

    PubMed  CAS  Google Scholar 

  6. A. Henglein. Preparation and optical aborption spectra of AucorePtshell and PtcoreAushell colloidal nanoparticles in aqueous solution. J. Phys. Chem. B. 104:2201–2203 (2000).

    CAS  Google Scholar 

  7. J. H. Hodak, A. Henglein, and G. V. Hartland. Coherent excitation of acoustic breathing modes in bimetallic core-shell nanoparticles. J. Phys. Chem. B. 104:5053–5055 (2000).

    CAS  Google Scholar 

  8. V. P. Torchilin. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58:1532–1555 (2006).

    PubMed  CAS  Google Scholar 

  9. S. J. Hurst, E. K. Payne, L. D. Qin, and C. A. Mirkin. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angewandte Chemie—International Edition. 45:2672–2692 (2006).

    CAS  Google Scholar 

  10. L. A. Bauer, N. S. Birenbaum, and G. J. Meyer. Biological applications of high aspect ratio nanoparticles. J. Mater. Chem. 14:517–526 (2004).

    CAS  Google Scholar 

  11. I. W. Eugenii Katz. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. ChemInform. 43, 6042–6108 (2004).

    Google Scholar 

  12. P. C. Lee and D. Meisel. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86:3391–3395 (1982).

    CAS  Google Scholar 

  13. A. Gole and C. J. Murphy. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 16:3633–3640 (2004).

    CAS  Google Scholar 

  14. L. Lu, H. Wang, Y. Zhou, S. Xi, H. Zhang, and B. Zhao. Seed-mediated growth of large, monodisperse core-shell gold–silver nanoparticles with Ag-like optical properties. Chem. Commun. 144–145 (2002).

  15. L. Wang, G. Wei, L. L. Sun, Z. G. Liu, Y. H. Song, T. Yang, Y. J. Sun, C. L. Guo, and Z. Li. Self-assembly of cinnamic acid-capped gold nanoparticles. Nanotechnology. 17:2907–2912 (2006).

    CAS  Google Scholar 

  16. L. H. Pei, K. Mori, and M. Adachi. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir. 20:7837–7843 (2004).

    PubMed  CAS  Google Scholar 

  17. C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B. 109:13857–13870 (2005).

    PubMed  CAS  Google Scholar 

  18. D. H. Qin, J. W. Zhou, C. Luo, Y. S. Liu, L. L. Han, and Y. Cao. Surfactant-assisted synthesis of size-controlled trigonal Se/Te alloy nanowires. Nanotechnology. 17:674–679 (2006).

    CAS  Google Scholar 

  19. G. Glavee, K. Klabunde, C. Sorensen, and G. Hadjipanayis. Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media—formation of nanoscale Fe, Feb, and Fe2B powders. Inorg. Chem. 34:28–35 (1995).

    CAS  Google Scholar 

  20. L. Longenberger and G. Mills. Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers. J. Phys. Chem. 99:475–478 (1995)

    CAS  Google Scholar 

  21. S. Ayyappan, R. Srinivasa Gopalan, G. N. Subbanna, and C. N. R. Rao. Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J. Mater. Res. 12:398–401 (1997).

    Article  CAS  Google Scholar 

  22. Z. L. Wang, Y. Liu, and Z. Zhang. Handbook of nanophase and nanostructured materials. Kluwer Academic Publishers, New York, (2002).

    Google Scholar 

  23. Y. Cui, X. Duan, Y. Huang, and C. Lieber. Nanowires as Building Blocks for nanoscale Science and Technology. Nanowires and Nanobelts—Materials, Properties and Devices, Tsinghua University Press, 3–68.

  24. Y. Jin and S. Dong. One-pot synthesis and characterization of novel silver–gold bimetallic nanostructures with hollow interiors and bearing nanospikes. J. Phys. Chem. B. 107:12902–12905 (2003).

    CAS  Google Scholar 

  25. X. Q. Zou, E. B. Ying, and S. J. Dong. Preparation of novel silver–gold bimetallic nanostructures by seeding with silver nanoplates and application in surface-enhanced Raman scattering. J. Colloid Interface Sci. 306:307–315 (2007).

    PubMed  CAS  Google Scholar 

  26. K. S. Shankar and A. K. Raychaudhuri. Fabrication of nanowires of multicomponent oxides: Review of recent advances. Mater. Sci. Eng. C. 25:738–751 (2005).

    Google Scholar 

  27. K. Zou, X. H. Zhang, X. F. Duan, X. M. Meng, and S. K. Wu. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J. Cryst Growth. 273:285–291 (2004).

    CAS  Google Scholar 

  28. S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed. 45:2672–2692 (2006).

    CAS  Google Scholar 

  29. A. Blondel, B. Doudin, and J. P. Ansermet. Comparative study of the magnetoresistance of electrodeposited Co/Cu multilayered nanowires made by single and dual bath techniques. J. Magn. Magn. Mater. 165:34–37 (1997).

    CAS  Google Scholar 

  30. C. D. Keating and M. J. Natan. Striped metal nanowires as building blocks and optical tags. Adv. Mater. 15:451–454 (2003).

    CAS  Google Scholar 

  31. T. Ohgai, X. Hoffer, A. Fábián, L. Gravier, and J.-P. Ansermet. Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium. J. Mater. Chem. 13:2530–2534 (2003).

    CAS  Google Scholar 

  32. A. M. Asaduzzaman and M. Springborg. Structural and electronic properties of Au, Pt, and their bimetallic nanowires. Phys. Rev. B. 72:(2005).

  33. B. R. Martin, D. J. Dermody, B. D. Reiss, M. Fang, L. A. Lyon, M. J. Natan, and T. E. Mallouk. Orthogonal self-assembly on colloidal gold–platinum nanorods. Adv Mater. 11:1021–1025 (1999)

    CAS  Google Scholar 

  34. M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M. Panigrahi, and T. Pal. Synthesis of Au-core–Ag-shell type bimetallic nanoparticles for single molecule detection in solution by SERS method. J. Nanopart. Res. 6:53–61 (2004).

    CAS  Google Scholar 

  35. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan. Submicrometer metallic barcodes. Science. 294:137–141 (2001).

    PubMed  CAS  Google Scholar 

  36. A. K. Salem, P. C. Searson, and K. W. Leong. Multifunctional nanorods for gene delivery. Nature Materials. 2:668–671 (2003).

    PubMed  CAS  Google Scholar 

  37. A. K. Salem. Co-delivery of antigens and adjuvants by particle bombardment of multicomponent metallic nanorods. Abstracts of Papers of the American Chemical Society. 230:U1201–U1202 (2005).

    Google Scholar 

  38. F. Liu, J. Y. Lee, and W. J. Zhou. Multisegment PtRu nanorods: Electrocatalysts with adjustable bimetallic pair sites. Adv. Funct. Mater. 15:1459–1464 (2005).

    CAS  Google Scholar 

  39. D. J. Pena, J. K. N. Mbindyo, A. J. Carado, T. E. Mallouk, C. D. Keating, B. Razavi, and T. S. Mayer. Template growth of photoconductive metal–CdSe-metal nanowires. J. Phys. Chem. B. 106:7458–7462 (2002).

    CAS  Google Scholar 

  40. E. C. Walter, B. J. Murray, F. Favier, and R. M. Penner. “Beaded” bimetallic nanowires: Wiring nanoparticles of metal 1 using nanowires of metal 2. Adv. Mater. 15:396–399 (2003).

    CAS  Google Scholar 

  41. X. H. Liu, J. Q. Wang, J. Y. Zhang, and S. R. Yang. Fabrication and characterization of LiFePO4 nanotubes by a sol–gel–AAO template process. Chinese Journal of Chemical Physics. 19:530–534 (2006).

    CAS  Google Scholar 

  42. X. H. Liu, J. Q. Wang, J. Y. Zhang, and S. R. Yang. Sol–gel template synthesis of LiV3O8 nanowires. J. Mater. Sci. 42:867–871 (2007).

    CAS  Google Scholar 

  43. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 391:775–778 (1998).

    PubMed  CAS  Google Scholar 

  44. E. Gazit. Use of biomolecular templates for the fabrication of metal nanowires. Febs Journal. 274:317–322 (2007).

    PubMed  CAS  Google Scholar 

  45. P. M. Harrison and P. Arosio. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta (BBA)—Bioenerg. 1275:161–203 (1996).

    Google Scholar 

  46. T. Douglas, D. P. E. Dickson, S. Betteridge, J. Charnock, C. D. Garner, and S. Mann. Synthesis and Structure of an Iron(III) Sulfide–Ferritin Bioinorganic Nanocomposite. Science. 269:54–57 (1995).

    PubMed  CAS  Google Scholar 

  47. F. C. Meldrum, T. Douglas, S. Levi, P. Arosio, S. Mann. Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J. Inorg. Biochem. 58:59–68 (1995).

    PubMed  CAS  Google Scholar 

  48. S. M. Kim and K. W. Wong. Biomimetic synthesis of cadmium sulfide–ferritin nanocomposites. Adv. Mater. 8:928–932 (1996).

    Google Scholar 

  49. M. Reches and E. Gazit. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science. 300:625–627 (2003).

    PubMed  CAS  Google Scholar 

  50. S. Padalkar, J. Hulleman, P. Deb, K. Cunzeman, J. C. Rochet, E. A. Stach, and L. Stanciu. Alpha-synuclein as a template for the synthesis of metallic nanowires. Nanotechnology. 18:(2007).

  51. S. J. Son and S. B. Lee. Controlled gold nanoparticle diffusion in nanotubes: Platfom of partial functionalization and gold capping. J. Am. Chem. Soc. 128:15974–15975 (2006).

    PubMed  CAS  Google Scholar 

  52. B. R. Martin, D. J. Dermody, B. D. Reiss, M. Fang, L. A. Lyon, M. J. Natan, T. E. Mallouk. Orthogonal self-assembly on colloidal gold–platinum nanorods. Adv. Mater. 11:1021–1025 (1999).

    CAS  Google Scholar 

  53. X. J. Wu, W. An, and X. C. Zeng. Chemical functionalization of boron–nitride nanotubes with NH3 and amino functional groups. J. Am. Chem. Soc. 128:12001–12006 (2006).

    PubMed  CAS  Google Scholar 

  54. M. Nakanishi, H. Takatani, Y. Kobayashi, F. Hori, R. Taniguchi, A. Iwase, and R. Oshima. Characterization of binary gold/platinum nanoparticles prepared by sonochemistry technique. Appl. Surf. Sci. 241:209–212 (2005).

    CAS  Google Scholar 

  55. Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, and Y. Maeda. Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J. Phys. Chem. B. 104:6028–6032 (2000).

    CAS  Google Scholar 

  56. H. Takatani, H. Kago, M. Nakanishi, Y. Kobayashi, F. Hori, and R. Oshima. Characterization of noble metal alloy nanoparticles prepared by ultrasound irradiation. Rev. Adv. Mater. Sci. 5:232–238 (2003).

    CAS  Google Scholar 

  57. N. S. Birenbaum, B. T. Lai, C. S. Chen, D. H. Reich, and G. J. Meyer. Selective noncovalent adsorption of protein to bifunctional metallic nanowire surfaces. Langmuir. 19:9580–9582 (2003).

    CAS  Google Scholar 

  58. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124:11864–11865 (2002).

    PubMed  CAS  Google Scholar 

  59. J. K. N. Mbindyo, T. E. Mallouk, J. B. Mattzela, I. Kratochvilova, B. Razavi, T. N. Jackson, and T. S. Mayer. Template synthesis of metal nanowires containing monolayer molecular junctions. J. Am. Chem. Soc. 124:4020–4026 (2002).

    PubMed  CAS  Google Scholar 

  60. T. F. Otero and E. Delarreta. Electrochemical control of the morphology, adherence, appearance and growth of polypyrrole films. Synth. Met. 26:79–88 (1988).

    CAS  Google Scholar 

  61. R. M. Hernández, L. Richter, S. Semancik, S. Stranick, and T. E. Mallouk. Template fabrication of protein-functionalized gold–polypyrrole–gold segmented nanowires. Chem. Mater. 16:3431–3438 (2004).

    Google Scholar 

  62. S. Wang, N. Mamedova, N.A. Kotov, W. Chen, and J. Studer. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2:817–822 (2002).

    CAS  Google Scholar 

  63. Y. Eichen, E. Braun, U. Sivan, and G. Ben-Yoseph. Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polym. 49:663–670 (1998).

    CAS  Google Scholar 

  64. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi. Self-assembly of CdSe–ZnS Quantum Dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122:12142–12150 (2000).

    CAS  Google Scholar 

  65. H. Matsui, P. Porrata, and G. E. Douberly. Protein tubule immobilization on self-assembled monolayers on Au substrates. Nano Lett. 1:461–464 (2001).

    CAS  Google Scholar 

  66. I. A. Banerjee, L. T. Yu, and H. Matsui. Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks. Nano Lett. 3:283–287 (2003).

    CAS  Google Scholar 

  67. A. K. Salem, J. Chao, K. W. Leong, P. C. Searson. Receptor-mediated self-assembly of multi-component magnetic nanowires. Adv. Mater. 16:268–271 (2004).

    CAS  Google Scholar 

  68. A. K. Salem, M. Chen, J. Hayden, K. W. Leong, and P. C. Searson. Directed assembly of multisegment Au/Pt/Au nanowires. Nano Lett. 4:1163–1165 (2004).

    CAS  Google Scholar 

  69. A. K. Salem, C. F. Hung, T. W. Kim, T. C. Wu, P. C. Searson, and K. W. Leong. Multi-component nanorods for vaccination applications. Nanotechnology. 16:484–487 (2005).

    CAS  Google Scholar 

  70. L. Soon, F. Braet, and J. Condeelis. Moving in the right direction—Nanoimaging in cancer cell motility and metastasis. Microsc. Res. Tech. 70:252–257 (2007).

    PubMed  CAS  Google Scholar 

  71. Y. W. C. Cao, R. C. Jin, and C. A. Mirkin. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 297:1536–1540 (2002).

    PubMed  CAS  Google Scholar 

  72. B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau. Toward larger chemical libraries: Encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc. 122:2138–2139 (2000).

    CAS  Google Scholar 

  73. J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem. 71:4903–4908 (1999).

    PubMed  CAS  Google Scholar 

  74. S. A. Dunbar and J. W. Jacobson. Application of the Luminex LabMAP in rapid screening for mutations in the cystic fibrosis transmembrane conductance regulator gene: A pilot study. Clin. Chem. 46:1498–1500 (2000).

    PubMed  CAS  Google Scholar 

  75. M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19:631–635 (2001).

    PubMed  CAS  Google Scholar 

  76. D. R. Walt. Molecular biology—Bead-based fiber-optic arrays. Science. 287:451–452 (2000).

    PubMed  CAS  Google Scholar 

  77. J. B. H. Tok, F. Y. S. Chuang, M. C. Kao, K. A. Rose, S. S. Pannu, M. Y. Sha, G. Chakarova, S. G. Penn, and G. M. Dougherty. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem.—Int. Ed. 45:6900–6904 (2006).

    CAS  Google Scholar 

  78. D. C. Pregibon, M. Toner, and P. S. Doyle. Multifunctional encoded particles for high-throughput biomolecule analysis. Science. 315:1393–1396 (2007).

    PubMed  CAS  Google Scholar 

  79. P. Alivisatos. The use of nanocrystals in biological detection. Nat. Biotechnol. 22:47–52 (2004).

    PubMed  CAS  Google Scholar 

  80. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai. Nanotube molecular wires as chemical sensors. Science. 287:622–625 (2000)

    PubMed  CAS  Google Scholar 

  81. A. M. Fond, N. S. Birenbaum, E. J. Felton, D. H. Reich, and G. J. Meyer. Preferential noncovalent immunoglobulin G adsorption onto hydrophobic segments of multi-functional metallic nanowires. J. Photochem. Photobiol. A: Chem. 186:57–64 (2007).

    CAS  Google Scholar 

  82. J. T. Sheu, C. C. Chen, P. C. Huang, Y. K. Lee, and M. L. Hsu. Selective deposition of gold nanoparticles on SiO2/Si nanowires for molecule detection. Jpn. J. Appl. Phys. Part 1—Regular Papers Short Notes & Review Papers. 44:2864–2867 (2005).

    CAS  Google Scholar 

  83. NIH. Diabetes, NIH MedlinePlus Medical Encyclopedia, U.S. National Library of Medicine and National Institutes of Health (2005).

  84. J. Wang and M. Musameh. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem. 75:2075–2079 (2003).

    PubMed  CAS  Google Scholar 

  85. B. R. Azamian, J. J. Davis, K. S. Coleman, C. B. Bagshaw, and M. L. H. Green. Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 124:12664–12665 (2002).

    PubMed  CAS  Google Scholar 

  86. K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3:727–730 (2003).

    CAS  Google Scholar 

  87. K. S. Lee and M. A. El-Sayed. Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J. Phys. Chem. B. 110:19220–19225 (2006).

    PubMed  CAS  Google Scholar 

  88. C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson. Epitaxially grown GaP/GaAs1−xPx/GaP double heterostructure nanowires for optical applications. Nanotechnology. 16:936–939 (2005).

    CAS  Google Scholar 

  89. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang. Room-temperature ultraviolet nanowire nanolasers. Science. 292:1897–1899 (2001).

    PubMed  CAS  Google Scholar 

  90. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science. 310:462–465 (2005).

    PubMed  CAS  Google Scholar 

  91. A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang. Color-tunable photoluminescence of alloyed CdSxSe1−x nanobelts. J. Am. Chem. Soc. 127:15692–15693 (2005).

    PubMed  CAS  Google Scholar 

  92. X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos. Shape control of CdSe nanocrystals. Nature. 404:59–61 (2000).

    PubMed  CAS  Google Scholar 

  93. Z. A. Peng and X. G. Peng. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123:1389–1395 (2001).

    CAS  Google Scholar 

  94. X. G. Peng. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15:459–463 (2003).

    CAS  Google Scholar 

  95. T. Kuykendall, P. J. Pauzauskie, Y. F. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. D. Yang. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Materials. 3:524–528 (2004).

    PubMed  CAS  Google Scholar 

  96. J. Goldberger, R. R. He, Y. F. Zhang, S. W. Lee, H. Q. Yan, H. J. Choi, P. D. Yang. Single-crystal gallium nitride nanotubes. Nature. 422:599–602 (2003).

    PubMed  CAS  Google Scholar 

  97. G. S. Yi, H. C. Lu, S. Y. Zhao, G. Yue, W. J. Yang, D. P. Chen, and L. H. Guo. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4 : Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 4:2191–2196 (2004).

    CAS  Google Scholar 

  98. F. van de Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke. Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol. 19:273–276 (2001).

    Google Scholar 

  99. L. Y. Wang, R. X. Yan, Z. Y. Hao, L. Wang, J. H. Zeng, H. Bao, X. Wang, Q. Peng, and Y. D. Li. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem.—Int. Ed. 44:6054–6057 (2005).

    CAS  Google Scholar 

  100. J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li. Synthesis and upconversion luminescence of hexagonal-phase NaYF4 : Yb, Er3+, phosphors of controlled size and morphology. Adv. Mater. 17:2119–2123 (2005).

    CAS  Google Scholar 

  101. S. Heer, K. Kompe, H. U. Gudel, and M. Haase. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16:2102–+ (2004).

    Google Scholar 

  102. X. Wang, J. Zhuang, Q. Peng, and Y. D. Li. A general strategy for nanocrystal synthesis. Nature. 437:121–124 (2005).

    PubMed  CAS  Google Scholar 

  103. L. Y. Wang and Y. D. Li. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 6:1645–1649 (2006).

    PubMed  Google Scholar 

  104. A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science. 271:933–937 (1996).

    CAS  Google Scholar 

  105. J. Janata and M. Josowicz. Conducting polymers in electronic chemical sensors. Nature Materials. 2:19–24 (2003).

    PubMed  CAS  Google Scholar 

  106. A. K. Wanekaya, W. Chen, N. V. Myung, and A. Mulchandani. Nanowire-based electrochemical biosensors. Electroanalysis. 18:533–550 (2006).

    CAS  Google Scholar 

  107. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu. Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl. Phys. Lett. 84:3376–3378 (2004).

    CAS  Google Scholar 

  108. B. J. Taft, A. D. Lazareck, G. D. Withey, A. J. Yin, J. M. Xu, and S. O. Kelley. Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J. Am. Chem. Soc. 126:12750–12751 (2004).

    PubMed  CAS  Google Scholar 

  109. Q. Ren, Y. P. Zhao, J. C. Yue, and Y. B. Cui. Biological application of multi-component nanowires in hybrid devices powered by F-1-ATPase motors. Biomedical Microdevices. 8:201–208 (2006).

    PubMed  CAS  Google Scholar 

  110. D. Cai, J. M. Mataraza, Z. H. Qin, Z. P. Huang, J. Y. Huang, T. C. Chiles, D. Carnahan, K. Kempa, and Z. F. Ren. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nature Methods. 2:449–454 (2005).

    PubMed  CAS  Google Scholar 

  111. D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. P. Briand, M. Prato, K. Kostarelos, and A. Bianco. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem.—Int. Ed. 43:5242–5246 (2004).

    CAS  Google Scholar 

  112. A. A. Wang, J. Lee, G. Jenikova, A. Mulchandani, N. V. Myung, and W. Chen. Controlled assembly of multi-segment nanowires by histidine-tagged peptides. Nanotechnology. 17:3375–3379 (2006).

    CAS  Google Scholar 

  113. A. Vogel and V. Venugopalan. Mechanisms of pulsed laser ablation of biological tissues (vol 103, pg 577, 2003). Chem. Rev. 103:2079–2079 (2003).

    Google Scholar 

  114. R. Weissleder. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–317 (2001).

    PubMed  CAS  Google Scholar 

  115. A. K. Salem, P. C. Searson, and K. W. Leong. Multifunctional nanorods for gene delivery. Nature Materials. 2:668–671 (2003).

    PubMed  CAS  Google Scholar 

  116. A. K. Salem, A. D. Sandler, G. J. Weiner, X. Q. Zhang, N. K. Baman, X. Zhu, and C. E. Dahle. Immunostimulatory antigen loaded microparticles as cancer vaccines. Molec. Ther. (2006).

  117. X. Q. Zhang, C. E. Dahle, G. J. Weiner, and A. K. Salem. A comparative study of the antigen-specific immune response induced by co-delivery of CpG ODN and antigen using fusion molecules or biodegradable microparticles. J. Pharm. Sci. In press DOI 10.1002/jps.20978 (2007).

  118. X. Q. Zhang, C. E. Dahle, N. K. Baman, N. Rich, G. J. Weiner, and A. K. Salem. Potent antigen-specific immune responses stimulated by co-delivery of CpG ODN and antigens in degradable microparticles. J. Immunother. 30(5):469–478 (2007).

    Google Scholar 

  119. C. F. Hung and T. C. Wu. Improving DNA vaccine potency via modification of professional antigen presenting cells. Curr. Opin. Mol. Ther. 5:20–24 (2003).

    PubMed  CAS  Google Scholar 

  120. C. F. Hung, W. F. Cheng, K. F. Hsu, C. Y. Chai, L. M. He, M. Ling, and T. C. Wu. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res. 61:3698–3703 (2001).

    PubMed  CAS  Google Scholar 

  121. S. Raychaudhuri and K. L. Rock. Fully mobilizing host defense: Building better vaccines. Nat. Biotechnol. 16:1025–1031 (1998).

    PubMed  CAS  Google Scholar 

  122. L. L. Zhao, T. Z. Lu, M. Yosef, M. Steinhart, M. Zacharias, U. Gosele, and S. Schlecht. Single-crystalline CdSe nanostructures: From primary grains to oriented nanowires. Chem. Mater. 18:6094–6096 (2006).

    CAS  Google Scholar 

  123. A. D. Lazareck, T. F. Kuo, J. M. Xu, B. J. Taft, S. O. Kelley, and S. G. Cloutier. Optoelectrical characteristics of individual zinc oxide nanorods grown by DNA directed assembly on vertically aligned carbon nanotube tips. Appl. Phys. Lett. 89:(2006).

  124. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15:353–389 (2003).

    CAS  Google Scholar 

  125. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature. 420:57–61 (2002).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support aided by grant number IRG-77-004-28 from the American Cancer Society and the National Science Foundation Nanoscale Exploratory Award. J. Melanko thanks the University of Iowa for a Presidential Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasger K. Salem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, M.E., Melanko, J.B. & Salem, A.K. Multifunctional Nanorods for Biomedical Applications. Pharm Res 24, 2335–2352 (2007). https://doi.org/10.1007/s11095-007-9380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9380-7

Key words

Navigation