Skip to main content
Log in

A Pyrene-based Highly Selective Turn-on Fluorescent Chemosensor for Iron(III) Ions and its Application in Living Cell Imaging

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new pyrene-based chemosensor (1) exhibits excellent selectivity for Fe3+ ions over a wide range of tested metal ions Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Hg2+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+. The binding of Fe3+ to chemosensor 1 produces an emission band at 507 nm due to the formation of a Py-Py* excimer that is induced by Fe3+-binding. The binding ratio of 1-Fe3+ was determined to be 1:1 from a Job plot. The association constant of 1-Fe3+ complexes was found to be 1.27 × 104 M−1 from a Benesi-Hildebrand plot. In addition, fluorescence microscopy experiments show that 1 can be used as a fluorescent probe for detecting Fe3+ in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cowan JA (1997) Inorganic biochemistry: An introduction. Wiley-VCH, New York, pp 167–255

    Google Scholar 

  2. Haas JD, Brownlie T IV (2001) Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship. J Nutr 131:676s–688s

    PubMed  CAS  Google Scholar 

  3. Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanisms: An overview. BioMetals 16:63–75

    Article  PubMed  CAS  Google Scholar 

  4. Bonda DJ, Lee H, Blair JA, Zhu X, Perry G, Smith MA (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3:267–270

    Article  PubMed  CAS  Google Scholar 

  5. Pithadia AS, Lee MH (2012) Metal-associated amyloid-β species in Alzheimer’s disease. Curr Opin Chem Biol 16:67–73

    Article  PubMed  CAS  Google Scholar 

  6. Andersen JET (2005) A novel method for the filterless preconcentration of iron. Analyst 130:385–390

    Article  PubMed  CAS  Google Scholar 

  7. del Castillo Busto ME, Montes-Bayon M, Blanco-Gonzalez E, Meija J, Sanz-Medel A (2005) Strategies to study human serum transferrin isoforms using integrated liquid chromatography ICPMS, MALDI-TOF, and ESI-Q-TOF detection: Application to chronic alcohol abuse. Anal Chem 77:5615–5621

    Article  PubMed  Google Scholar 

  8. Pomazal K, Prohaska C, Steffan I, Reich G, Huber JFK (1999) Determination of Cu, Fe, Mn, and Zn in blood fractions by SEC-HPLC-ICP-AES coupling. Analyst 124:657–663

    Article  PubMed  CAS  Google Scholar 

  9. van den Berg CMG (2006) Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Anal Chem 78:156–163

    Article  PubMed  Google Scholar 

  10. Bricks JL, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev AI, Daub J, Rurack K (2005) On the development of sensor molecules that display FeIII-amplified fluorescence. J Am Chem Soc 127:13522–13529

    Article  PubMed  CAS  Google Scholar 

  11. Xiang Y, Tong A (2006) A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence. Org Lett 8:1549–1552

    Article  PubMed  CAS  Google Scholar 

  12. Kennedy DP, Incarvito CD, Burdette SC (2010) FerriCast: A macrocyclic photocage for Fe3+. Inorg Chem 49:916–923

    Article  PubMed  CAS  Google Scholar 

  13. Zhang L, Zhao J, Zeng X, Mu Mu L, Jiang X, Deng M, Zhang J, Wei G (2011) Tuning with pH: The selectivity of a new rhodamine B derivative chemosensor for Fe3+ and Cu2+. Sens Actuators B 160:662–669

    Article  CAS  Google Scholar 

  14. Wang S, Meng X, Zhu M (2011) A naked-eye rhodamine-based fluorescent probe for Fe(III) and its application in living cells. Tetrahedron Lett 52:2840–2843

    Article  CAS  Google Scholar 

  15. Zhang L, Wang J, Fan J, Guo K, Peng X (2011) A highly selective, fluorescent chemosensor for bioimaging of Fe3+. Bioorg Med Chem Lett 21:5413–5416

    Article  PubMed  CAS  Google Scholar 

  16. Wei D, Sun Y, Yin J, Wei G, Du Y (2011) Design and application of Fe3+ probe for “naked-eye” colorimetric detection in fully aqueous system. Sens Actuators B 160:1316–1321

    Article  CAS  Google Scholar 

  17. Yang Z, She M, Yin B, Cui J, Zhang Y, Sun W, Li J, Shi Z (2012) Three rhodamine-based “off-on” chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells. J Org Chem 77:1143–1147

    Article  PubMed  CAS  Google Scholar 

  18. Kumar M, Kumar R, Bhalla V, Sharma PR, Kaur T, Qurishi Y (2012) Thiacalix[4]arene based fluorescent probe for sensing and imaging of Fe3+ ions. Dalton Trans 41:408–412

    Article  PubMed  CAS  Google Scholar 

  19. Li Z, Zhang L, Li X, Guo Y, Ni Z, Chen J, Wei L, Yu M (2012) A fluorescent color/intensity changed chemosensor for Fe3+ by photo-induced electron transfer (PET) inhibition of fluoranthene derivative. Dyes Pigments 94:60–65

    Article  CAS  Google Scholar 

  20. Liu S, Wu S (2012) New water-soluble highly selective fluorescent chemosensor for Fe(III) ions and its application to living cell imaging. Sens Actuators B 171–172:1110–1116

    Article  Google Scholar 

  21. Thomas F, Serratrice G, Beguin C, Aman ES, Pierre JL, Fontecave M, Laulhere JP (1999) Calcein as a fluorescent probe for ferric iron. J Biol Chem 274:13375–13383

    Article  PubMed  CAS  Google Scholar 

  22. Liu JM, Yang JL, Chen CF, Huang ZT (2002) A new fluorescent chemosensor for Fe3+ and Cu2+ based on calix[4]arene. Tetrahedron Lett 43:9209–9212

    Article  CAS  Google Scholar 

  23. Ma Y, Luo W, Quinn PJ, Liu Z, Hider RC (2004) Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensors. J Med Chem 47:6349–6362

    Article  PubMed  CAS  Google Scholar 

  24. Tumambac GE, Rosencrance CM, Wolf C (2004) Selective metal ion recognition using a fluorescent 1,8-diquinolylnaphthalene-derived sensor in aqueous solution. Tetrahedron 60:11293–11297

    Article  CAS  Google Scholar 

  25. Sumner JP, Kopelman R (2005) Alexa Fluor 488 as an iron sensing molecule and its application in PEBBLE nanosensors. Analyst 130:528–533

    Article  PubMed  CAS  Google Scholar 

  26. Wu S, Huang Z, Liu S, Chung PK (2012) A pyrene-based highly selective turn-on fluorescent sensor for copper(II) Ion and its application in live cell imaging. J Fluoresc 22:253–259

    Article  PubMed  CAS  Google Scholar 

  27. Zhou Z, Cao C, Liu Q, Jiang R (2010) Hybrid orbital deformation (HOD) effect and spectral Red-shift property of nonplanar porphyrin. Org Lett 12:1780–1783

    Article  PubMed  CAS  Google Scholar 

  28. Senthilvelan A, Ho I, Chang K, Lee G, Liu Y, Chung W (2009) Cooperative recognition of a copper cation and anion by a calix[4]arene substituted at the lower rim by a β-amino-α, β-unsaturated ketone. Chem Eur J 15:6152–6160

    Article  PubMed  CAS  Google Scholar 

  29. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  30. Wu S, Wang T, Liu S (2010) A highly selective turn-on fluorescent chemosensor for copper(II) ion. Tetrahedron 66:9655–9658

    Article  CAS  Google Scholar 

  31. Maeda H, Inoue Y, Ishida H, Mizuno K (2001) UV absorption and fluorescence properties of pyrene derivatives having trimethylsilyl, trimethylgermyl, and trimethylstannyl groups. Chem Lett 1224–1225

  32. Karpovich DS, Blanchard GJ (1995) Relating the polaritydependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. J Phys Chem 99:3951–3958

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial supports of the National Science Council (ROC) and National Chiao Tung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Pao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, P.K., Liu, SR., Wang, HF. et al. A Pyrene-based Highly Selective Turn-on Fluorescent Chemosensor for Iron(III) Ions and its Application in Living Cell Imaging. J Fluoresc 23, 1139–1145 (2013). https://doi.org/10.1007/s10895-013-1242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1242-6

Keywords

Navigation