Skip to main content
Log in

Pyrene Based Fluorescent Turn-on Chemosensor for Sequential Detection of Fe3+ and Fe2+ Ions and its Application in Live Cell Imaging

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple pyrene-based “turn-on” chemosensor bearing isonizide namely 3-(pyren-1-yl methylene) pentane-2,4-diyldene di(isonicotinohydrazide) (PMPD) was designed and synthesized for detecting Fe3+and Fe2+ ions in HEPES buffer solution at pH 7.4 (DMSO: H2O (1:9 v/v)) medium. The probe shows conducive selectivity for Fe2+ and Fe3+ ions over the other competitive metal cations. The detection limit was found to be 1.67 μM for Fe3+ and 2.02 μM for Fe2+. The recognition mechanism of PMPD towards Fe3+ and Fe2+ has been examined in detail by absorption, emission, and ESI-MS studies. Moreover, “turn-on” fluorescence behavior of the probe was used to track iron ions in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Liu S, Wang YM, Han J (2017) Fluorescent Chemosensors for copper(II) ion: structure, mechanism and application. J Photochem Photobiol C 32:78–103

    Article  CAS  Google Scholar 

  2. Chen CH, Cho C, Wan CF, Wu AT (2014) A colorimetric sensor for Fe2+ ion. Inorg Chem Commun 41:88–91

    Article  CAS  Google Scholar 

  3. Liang ZQ, Wang CX, Yang JX, Gao HW, Tian YP, Tao XT, Jiang MH (2007) A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II) and iron(III) ions in water. New J Chem 31:906–910

    Article  CAS  Google Scholar 

  4. Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Curr Opin Chem Biol 3:200–206

    Article  CAS  PubMed  Google Scholar 

  5. Yang Y, Yin C, Huo F, Zhang Y, Chao J (2014) A ratiometric colorimetric and fluorescent chemosensor for rapid detection hydrogen sulfide and its bioimaging. Sensors Actuators B Chem 203:596–601

    Article  CAS  Google Scholar 

  6. Zhu A, Luo Z, Ding C, Li B, Zhou S, Wang R, Tian Y (2014) A two-photon “turn-on” fluorescent probe based on carbon nanodots for imaging and selective biosensing of hydrogen sulfide in live cells and tissues. Analyst 139:1945–1952

    Article  CAS  PubMed  Google Scholar 

  7. Rohani Moghadam M, Poorakbarian Jahromi SM, Darehkordi A (2016) A two-photon “turn-on” fluorescent probe based on carbon nanodots for imaging and selective biosensing of hydrogen sulfide in live cells and tissues. Food Chem 192:424–431

    Article  CAS  PubMed  Google Scholar 

  8. Feist B, Mikula B (2014) Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem 147:302–306

    Article  CAS  PubMed  Google Scholar 

  9. Ma S, Yang Z, She M, Sun W, Yin B, Liu P, Zhang S, Li J (2015) Design and synthesis of functionalized rhodamine based probes for specific intracellular fluorescence imaging of Fe3+. Dyes Pigments 115:120–126

    Article  CAS  Google Scholar 

  10. Jung HJ, Singh N, Jang DO (2008) Highly Fe3+ selective ratiometric fluorescent probe based on imine-linked benzimidazole. Tetrahedron Lett 49:2960–2964

    Article  CAS  Google Scholar 

  11. Cowan JA (1997) Inorganic biochemistry: an introduction. Wiley-VCH, New York, pp 167–255

    Google Scholar 

  12. Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life. Clarendon Press Oxford, Oxford

    Google Scholar 

  13. Matzanke BF, Muller-Matzanke G, Raymond KN (1989) In iron carriers and iron proteins. In: Loehr TM (ed) Physical bioinorganic series. VCH Publishers, New York, pp 1–121

  14. Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan CD, Kaplan J (2009) Iron acquisition and transcription. Chem Rev 109:4536–4552

    Article  CAS  PubMed  Google Scholar 

  16. Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanism: an overview. BioMetals 16:63–75

    Article  CAS  PubMed  Google Scholar 

  17. Bonda DJ, Lee H, Blair JA, Zhu X, Perryab G, Smith MA (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3:267–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211

    Article  CAS  PubMed  Google Scholar 

  19. Fakih S, Podinovskaia M, Kong X, Collins HL, Schaible UE, Hider RC (2008) Targeting the lysosome: fluorescent Iron(III) chelators to selectively monitor endosomal/ lysosomal labile Iron pools. J Med Chem 51:4539–4552

    Article  CAS  PubMed  Google Scholar 

  20. Bousejera-ElGarah F, Bijani C, Coppel Y, Faller P, Hureau C (2011) Iron(II) binding to amyloid-β, the Alzheimer’s peptide. Inorg Chem 50:9024–9030

    Article  CAS  Google Scholar 

  21. Şenol AM, Onganer Y, Meral K (2017) An unusual “off-on” fluorescence sensor for iron(III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine. Sensors Actuators B 239:343–351

    Article  CAS  Google Scholar 

  22. Li P, Zhao Y, Yao L, Nie H, Zhang M (2014) A simple, selective, fluorescent iron(III) sensing material based on peripheral carbazole. Sensors Actuators B 191:332–336

    Article  CAS  Google Scholar 

  23. Brown DR, Kozlowski H (2004) Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans (13):1907–1917

  24. Jitendra N, Samadhan P, Prashant P, Suban S, Carl R, Pramod M, Umesh P (2014) The Amidine based colorimetric sensor for Fe3+, Fe2+, and Cu2+ in aqueous medium. J Fluoresc 24:1563–1570

    Article  CAS  Google Scholar 

  25. Rasheed L, Yousuf M, Youn S, Uoon T, Kim KY, Seo YK, Shi G, Saleh M, Hur JH, Kim KS (2015) Turn-on Ratiometric fluorescent probe for selective discrimination of Cr3+ from Fe3+ in aqueous Media for Living Cell Imaging. J Eur chem 21:16349–16349

    Article  CAS  Google Scholar 

  26. Goswami S, chakraborty S, Paul S, Halder S, panja S, Mukhopadhay SK (2014) A new pyrene based highly sensitive fluorescence probe for copper(II) and fluoride with living cell application. Org Biomol Chem 12:3037–3044

    Article  CAS  PubMed  Google Scholar 

  27. Turro NJ (1978) Modern molecular photochemistry. Benjamin/Cummings Publishing Co, Menlo Park

    Google Scholar 

  28. Venkatesan M, Sathiyanarayanan KI (2018) Highly selective chemosenor for the detection of Ru3+ ion by fluorescent turn-on response and its bioimaging recognition in living cells. Sensors Actuators B 267:373–380

Download references

Acknowledgements

The authors express their sincere thanks to Council of Scientific and Industrial Research (CSIR), New Delhi, India [Grant No. 01(2907)/17/EMR-II] for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periasamy Viswanathamurthi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhivya, R., Gomathi, A. & Viswanathamurthi, P. Pyrene Based Fluorescent Turn-on Chemosensor for Sequential Detection of Fe3+ and Fe2+ Ions and its Application in Live Cell Imaging. J Fluoresc 29, 797–802 (2019). https://doi.org/10.1007/s10895-019-02392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02392-2

Keywords

Navigation