Skip to main content
Log in

Preparation and Spectral Characterization of Fluorescence Probes Based on 4-N,N-Dimethylamino Benzoic Acid and Sterically Hindered Amines

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The adducts of simple chromophore 4-N,N-dimethylamino benzoic acid with 2,2,6,6-tetrametyl-4-hydroxy- or 4-amino-piperidine were examined as fluorescence probes (spin double sensors) to monitor radical processes. The links in the adducts were either an ester or amide group, and the sterically hindered amines were in the form of -NH, -NO• and –NOR. The spectral properties of the three related derivatives (esters or amides) were quite similar. The maxima of the absorption spectra were in the range of 295–315 nm, and the maximum of fluorescence was located in the range of 330–360 nm, depending on the polarity of the solvent. In polar solvents, a red-shifted fluorescence band at 460–475 nm was observed. The fluorescence of these derivatives was rather weak as compared to anthracene under the same conditions. The Stokes shift was large, as high as 6,000 cm−1, indicating the formation of a twisted intra-molecular charge transfer (TICT) state. No large differences in Stokes shifts were observed in polymer matrices of poly(methyl methacrylate), polystyrene and poly(vinyl chloride). The extent of intramolecular quenching was expressed as ΦNXNO (X = H, NOR) and was in the range of 1–3 in solution and as high as 8 in polymer matrices. The low efficiency of intramolecular quenching limits the application of these new adducts as fluorescence probes for the monitoring of radical processes in solution but favors their application in polymer matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publisher, New York

    Google Scholar 

  2. Valuer B (2001) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  3. Albani JR (2005) Structure and dynamics of macromoleules; absorption and fluorescence studies. Elsevier, Amsterdam

    Google Scholar 

  4. Winnik FM, Regismond STA (1996) Fluorescence methods in the study of the interaction of surfactant with polymers. Colloid Surface Physicochem Eng Aspects 118:1–39. doi:10.1016/0927-7757(96)03733-8

    Article  CAS  Google Scholar 

  5. Capek I (2002) Fate of excited probes in micellar systems. Adv Colloid Interface Sci 97:91–149. doi:10.1016/S0001-8686(01)00049-5

    Article  PubMed  CAS  Google Scholar 

  6. Lippert E, Luder W, Boos H(1962) In: Mangini A (ed) Advances in molecular spectroscopy Pergamon, Oxford pp 443

  7. Grabowski ZR, Rotkiewicz K, Siemiarczuk A, Cowley DJ, Baumann W (1979) Twisted Intramolecular Charge Transfer States (TICT) - new class of excited-states with a full charge separation. Nouv J Chim 3:443–454

    CAS  Google Scholar 

  8. Rettig W (1986) Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angew Chem Intern Ed 25:971–988. doi:10.1002/anie.198609711

    Article  Google Scholar 

  9. Revill JAT, Brown RG (1992) Excimer versus TICT state formation in polar solutions of methyl 4-(N, N-demethylamino)benzoate. Chem Phys Lett 188:433–438. doi:10.1016/0009-2614(92)80843-Z

    Article  CAS  Google Scholar 

  10. Gormin D, Kasha M (1988) Triple fluorescence in aminosalicylates. Modulaton of normal proton transfer, and twisted intramolecular charge transfer (TICT) fluorescence by physical and chemical perturbations. Chem Phys Lett 153:574–576. doi:10.1016/0009-2614(88)85263-1

    Article  CAS  Google Scholar 

  11. Dendonder-Lardeux C, Jouvet C, Martrenchard S, Solgadi D, Mc Combie J, Howells HD, Palmers TF, Subaric-Leitis A, Monte C, Rettig W, Zimmermann P (1995) Photochemistry in jet cooled aniline derivatives. Chem Phys 191:271–287. doi:10.1016/0301-0104(94)00334-7

    Article  Google Scholar 

  12. Kim Y, Cheon HW, Yoon M, Song NW, Kim D (1997) SiO2 Colloidal effects on the twisted intramolecular charge transfer of p-N,N-dimethylaminobenzoic acid in acetonitrile. Chem Phys Lett 264:673–679. doi:10.1016/S0009-2614(96)01388-7

    Article  CAS  Google Scholar 

  13. Kim Y, Lee BI, Yoon M (1998) Excited-state intramolecular charge transfer of p-N,N-dimethylaminobenzoic acid in Y zeolites: hydrogen bonding effects. Chem Phys Lett 286:466–472. doi:10.1016/S0009-2614(98)00125-0

    Article  CAS  Google Scholar 

  14. Jiang Y-B, Wang X-J, Jin M-G, Lin L-R (1999) The effect of micelle-water interface electric field on the intramolecular charge transfer within ionic micelles. Dual fluorescence of sodium p-dialkylaminobenzoates in cetylamonium micelles. J Photochem Photobiol Chem 126:125–133. doi:10.1016/S1010-6030(99)00100-8

    Article  CAS  Google Scholar 

  15. Jiang Y-B, Jin M-G (2000) Intramolecular charge transfer at reverse micelle-water pool interface: p-N, N- dimethylaminobenzoic acid in AOT/cyclohexane/water reverse micelle. Spectrochim Acta Part A 56:623–627. doi:10.1016/S1386-1425(99)00171-7

    Article  CAS  Google Scholar 

  16. Jiang Y-B (1999) Concentration dependent dual fluorescence of 4-(N, N-dimethylamino) bnzoic acid in chloroform. Spectrochim Acta Part A 55:833–837. doi:10.1016/S1386-1425(98)00229-7

    Article  Google Scholar 

  17. Huang W, Zhang X, Ma L-H, Wang Ch-J, Jiang Y-B (2002) Intramolecular charge transfer dual fluorescence of substituted-phenyl p-dimethylaminobenzoates with comparable electron acceptors. Chem Phys Lett 352:401–407. doi:10.1016/S0009-2614(01)01491-9

    Article  CAS  Google Scholar 

  18. Ma L-H, Chen Z-B, Jiang Y-B (2003) Intramolecular charge transfer with 4(N-ohenylamino)benzoic acid. The N-phenyl conjugation effect. Chem Phys Lett 372:104–113. doi:10.1016/S0009-2614(03)00372-5

    Article  CAS  Google Scholar 

  19. Zhang C-H, Chen Z-B, Jiang Y-B (2004) Intramolecular charge transfer dual fluorescence p-methylaminobenzoates. Spectrochim Acta Part A 60:2729–2732. doi:10.1016/j.saa.2004.01.011

    Article  Google Scholar 

  20. Blough NV, Simpson DJ (1988) Chemically mediated fluorescence yield switching in nitroxide –fluorophore adducts: optical sensors of radical/redox reaction. J Am Chem Soc 110:1915–1917. doi:10.1021/ja00214a041

    Article  CAS  Google Scholar 

  21. Gerlock JL, Zacmanidis PJ, Bauer DR, Simpson DJ, Blough NV, Solmeen IT (1990) Fluorescence detection of free radicals by nitroxide scavenging. Free Rad Res Communs 10:119–121

    Article  CAS  Google Scholar 

  22. Török M, Hideg K, Dux L, Horváth LI (1997) Accessibility of protein sulfhydryl groups to nitroxyl spin labels. J Mol Struct 408/409:177–180. doi:10.1016/S0022-2860(96)09634-2

    Article  Google Scholar 

  23. Hrdlovič P, Chmela Š, Búcsiová L (1996) Spectral characteristics of bifunctional fluorescence probe based on naphthalene: comparison in solution and in polymer matrix. Chem Papers 50:271–278

    Google Scholar 

  24. Hrdlovič P, Chmela Š (1997) Spectral characteristics of multifunctional probes based on pyrene in solution and in polymer matrices. J PhotochemPhotobiol A Chem 105:83–88. doi:10.1016/S1010-6030(97)00008-7

    Article  Google Scholar 

  25. Búcsiová L, Hrdlovič P, Chmela Š (2001) Spectral characteristics of fluorescence probes based on pyrene in solution and in polymer matrix. J Photochem Photobiol A Chem 143:59–68. doi:10.1016/S1010-6030(01)00483-X

    Article  Google Scholar 

  26. Hrdlovič P, Chmela Š, Danko M (1998) Spectral characteristics and photochemical stability of fluorescence probes based on 1,8-naphthaleneimide in solution and in polymer matrix. JPhotochem Photobiol A Chem 112:197–203. doi:10.1016/S1010-6030(97)00277-3

    Article  Google Scholar 

  27. Hrdlovič P, Danko M, Chmela Š (2002) Spectral properties and photolytical stability of anthracene-hindered amine probes: influence of the medium. J Photochem Photobiol A Chem 149:207–216. doi:10.1016/S1010-6030(02)00011-4

    Article  Google Scholar 

  28. Hrdlovič P, Kollár J, Chmela Š (2004) Novel fluorescence probe based on pyrene and piperazine; spectral properties in solution and in polymer matrices. J Photochem Photobiol A Chem 163:289–296. doi:10.1016/j.jphotochem.2003.12.002

    Article  Google Scholar 

  29. Hrdlovič P, Chmela Š (1998) Spectral and photostabilizing characteristics of adducts of aromatic hydrocarbons and hindered amine stabilizers. Polym Degrad Stab 61:177–182. doi:10.1016/S0141-3910(97)00067-0

    Article  Google Scholar 

  30. Bucsiová L, Chmela Š, Hrdlovič P (2001) Preparation, photochemical stability and stabilising efficiency of adducts of pyrene and hindered amine stabilisers in iPP matrix. Polym Degrad Stab 71:135–145. doi:10.1016/S0141-3910(00)00164-6

    Article  Google Scholar 

  31. Danko M, Chmela Š, Hrdlovič P (2003) Photochemical stability and photostabilizing efficiency of anthracene/hindered amine stabilizer probes in polymer matrices. Polym Degrad Stab 79:333–343. doi:10.1016/S0141-3910(02)00297-5

    Article  CAS  Google Scholar 

  32. Hawker CJ (1997) Living free radical polymerization: a unique technique for the preparation of controlled macromolecular architecture. Acc Chem Res 30:373–382. doi:10.1021/ar960248m

    Article  CAS  Google Scholar 

  33. Matyjaszewski K (1998) Controlled radical polymerization, Vol. 685. Matyjaszewski K (ed) ACS, Washington, p 2

  34. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK (1994) Polydispersity polystyrene by a free-radical polymerization process-rate enhancement. Macromolecules 27:7228–7229. doi:10.1021/ma00102a039

    Article  CAS  Google Scholar 

  35. Li I, Howell BA, Matyjaszewski K, Shigemoto T, Smith PB, Priddy DB (1995) Kinetics of decomposition of 2,2,6,6-tetramethyl-1-(1-phenylethoxy)piperidine and its implications on nitroxyl-mediated styrene polymerization. Macromolecules 28:6692–6693. doi:10.1021/ma00123a044

    Article  CAS  Google Scholar 

  36. Fukuda T, Terauchi T, Goto A, Tsujii Y, Miyamoto T, Shimizu Y (1996) Well-defined block copolymers comprising styrene − acrylonitrile random copolymer sequences synthesized by “living” radical polymerization. Macromolecules 29:3050–3052. doi:10.1021/ma951792y

    Article  CAS  Google Scholar 

  37. Bálint J, Kiss V, Egri G, Kálai T, Demeter Á, Balog M, Fogassy E, Hideg K (2004) Kinetic resolution of 1-oxyl-3-hydroxymethyl-2,2,5,5- tetramethylpyrrolidine derivatives by lipase-catalyzed enantiomer selective acylation. Tetrahedron-Asymmetry 15:671–679. doi:10.1016/j.tetasy.2003.12.026

    Article  Google Scholar 

  38. Essman M, Sár PC, Hideg K, Marsh D (1993) Iodoacetamide, indanedione, and chloromercuric spin label reagents with derivatized nitroxide rings as ESR Reporter Groups for Protein Conformation and Dynamics. Anal Biochem 213:336–348. doi:10.1006/abio.1993.1430

    Article  Google Scholar 

  39. Qi C, Kusnetzow AK, Hideg K, Price EA, Haworth IS, Qin PZ (2007) Nanometer distance measurements in RNA using site-directed spin labeling. Biophys J 93:2110–2117. doi:10.1529/biophysj.107.109439

    Article  Google Scholar 

  40. Kálai T, Hideg É, Vass I, Hideg K (1998) Double (Fluorescent and Spin) sensors for detection of reactive oxygen species in the thylakoid membrane. Free Radical Biol Med 24:649–652. doi:10.1016/S0891-5849(97)00339-0

    Article  Google Scholar 

  41. Chmela Š, Hrčková L (2009) Nitroxide mediated styrene radical polymerization using a fluorescence marked mediator. Eur Polym J 45:2580–2586. doi:10.1016/j.eurpolymj.2009.06.019

    Article  CAS  Google Scholar 

  42. Step EN, Turro NJ, Klemchuk PP, Gande ME (1995) Model studies on the mechanism of hals stabilization. Angew Makromol Chem 232:65–83. doi:10.1002/apmc.1995.052320105

    Article  CAS  Google Scholar 

  43. Chirinos-Padrón AJ (1989) Mechanistic aspects of polymer photostabilization. J Photochem Photobiol A Chem 49:1–39. doi:10.1016/1010-6030(89)87103-5

    Article  Google Scholar 

  44. Pospıšil J (1991) Photo-oxidation degradation of polymers: causes, consequences and protection. Chem Listy 85:904–923

    Google Scholar 

  45. Micallef AS, Blinco JP, George GA, Reid DA, Rizzardo E, Thang SH, Bottle SE (2005) The application of a novel profluorescent nitroxide to monitor thermo-oxidative degradation of polypropylene Polym. Degrad Stab 89:427–435. doi:10.1016/j.polymdegradstab.2005.01.030

    Article  CAS  Google Scholar 

  46. Fairfull-Smith KE, Blinco JP, Keddie DJ, George GA, Bottle SE (2008) A novel profluorescent dinitroxide for imaging polypropylene degradation. Macromolecules 41:1577–1580. doi:10.1021/ma701944p

    Article  CAS  Google Scholar 

  47. Carver FJ, Hunter CA, Livingstone DJ, McCabe JF, Seward EM (2002) Substituent effects on edge-to-face aromatic interactions. Chem Europ J 8:2847–2859. doi:10.1002/1521-3765(20020703)8:13<2847::AID-CHEM2847>3.0.CO;2-M

    Article  CAS  Google Scholar 

  48. Takashi H, Yoshihiko I, Kiyotaka K, Shinsaku N, Kazuko I et al (1990) The effects of new cytochalasins from phomopsis sp. and the derivatives on cellular structure and actin polymerization. Chem Pharm Bull 38:971–974

    Article  Google Scholar 

  49. Vamecq J, Lambert D, Poupaert JH, Masereel B, Stables J (1998) Anticonvulsant activity and interactions with neuronal voltage-dependent sodium channel of analogues of ameltolide. J Med Chem 41:3307–3313. doi:10.1021/jm9608772

    Article  PubMed  CAS  Google Scholar 

  50. Kawski A, Kubicki A, Kuklinski B, Gryczynski I (1993) Unusual absorption and fluorescence properties of 1,6-diphenyl-1,3,5-hexatriene in poly(vinyl alcohol) film. J Photochem Photobiol A Chem 71:161–167. doi:10.1016/1010-6030(93)85068-J

    Article  CAS  Google Scholar 

  51. Birks JB (1968) Photophysics of aromatic molecules. Willey-Interscience a Division of John Wiley and Sons Ltd, New York, London, Toronto, Sidney, Ch 4. p 121–127

  52. Adamson AW, Demas JN (1971) Evaluation of photoluminescence lifetimes. J Phys Chem 75:2463–2466. doi:10.1021/j100685a009

    Article  CAS  Google Scholar 

  53. Demas JN (1973) Excited state lifetime measurements. Appendix E. Academic, New York, p 245

    Google Scholar 

  54. Enderlein J, Erdmann R (1997) Fast fitting of multi-exponential decay curves. Opt Commun 134:371–378. doi:10.1016/S0030-4018(96)00384-7

    Article  CAS  Google Scholar 

  55. Allen NS, Edge M, Sethi S, Catalina F, Corrales T (2000) Photochemistry and photo-induced co-synergistic polymerization activites of novel N,N-dimethylaminobenzoates and benzamides. J Photochem Photobiology A Chem 137:169–176. doi:10.1016/S1010-6030(00)00364-6

    Article  CAS  Google Scholar 

  56. Danko M, Chmela Š, Hrdlovič P (2006) Synthesis, photochemical stability and photo-stabilizing efficiency of probes based on benzothioxanthene chromophore and hindered amine stabilizer. Polym Degrad Stab 91:1045–1051. doi:10.1016/j.polymdegradstab.2005.07.009

    Article  CAS  Google Scholar 

  57. Kollár J, Hrdlovič P, Chmela Š (2008) Synthesis and spectral characteristics of di-substituted 1,8-naphthalimides; bi-radical formation. J Photochem Photobiology A Chem 195:64–71. doi:10.1016/j.jphotochem.2007.09.008

    Article  Google Scholar 

  58. Rettig W, Lapouyade R (1994) Fluorescent probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, Vol. 4.: probe design and chemical sensing. Plenum Press, New York, pp 109–149

    Google Scholar 

  59. Kaholek M, Hrdlovič P (1999) Characteristics of the excited states of 3-substituted coumarin derivatives and transfer of electronic energy to N-oxyl radicals. J Photochem Photobiol A Chem 127:45–55. doi:10.1016/S1010-6030(99)00133-1

    Article  CAS  Google Scholar 

  60. Köhler G, Rechthaler K, Rotkiewicz K, Rettig W (1996) Formation and stabilization of twisted intramolecular charge transfer states in binary mixed solvents. Chem Phys 207:85–101. doi:10.1016/0301-0104(96)00054-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors are greatly acknowledged to Grant agency VEGA for financial support through the project 2/0074/10 and Slovak Research and Development Agency through projects APVV-0109-10 and APVV-0562-07. For NMR measurements provided by the Slovak State Program Project No. 2003SP200280203 are gratefully acknowledged as well. This publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Kósa.

Electronic supplementary material

Supplementary data associated (NMR, FTIR spectra and Figures S1–S4) with this article can be found in the online version of the journal.

ESM 1

(DOC 3162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kósa, C., Danko, M. & Hrdlovič, P. Preparation and Spectral Characterization of Fluorescence Probes Based on 4-N,N-Dimethylamino Benzoic Acid and Sterically Hindered Amines. J Fluoresc 22, 1371–1381 (2012). https://doi.org/10.1007/s10895-012-1076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1076-7

Keyword

Navigation