Skip to main content
Log in

Study of Enhanced Chemiluminescence of Diperiodatocuprate (III) on 1,10-Phenanthroline/Hydrogen Peroxide/Cetyltrimethylammonium Bromide System

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the paper, a chemiluminescence (CL) system was developed based on the catalytical effect of diperiodatocuprate (III) (DPC) on the 1,10-phenanthroline (phen)/hydrogen peroxide (H2O2) in the presence of cetyltrimethylammonium bromide (CTAB). The effects of experimental conditions were investigated. Meanwhile the increase of CL intensity of the DPC/phen/H2O2/CTAB system is proportional to the concentration of phen in the range of low concentration. The linear range of the calibration curve is 5.0 × 10−9–1.0 × 10−6 mol L−1, and the corresponding detection limit is 1.9 × 10−9 mol L−1. The effects of phenolic compounds (PCs) on the system were investigated. Hydroquinone was used as an example to investigate the application of the CL system to the determination of PCs. The quenched CL intensity is linearly related to the logarithm of concentration of hydroquinone. The linear range of the calibration curve is 2.5 × 10−9–1.0 × 10−5 g mL−1, and the corresponding detection limit is 1.8 × 10−9 g mL−1. This phen and hydroquinone can be synchronously determined. The method was applied to the determination of hydroquinone in water samples and the recoveries were from 92% to 106%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Movius WG (1973) Oxidation of alcohols by diperiodatocuprate (III). Inorg Chem 12:31–33

    Article  CAS  Google Scholar 

  2. Shan JH, Wang LP, Shen SG, Sun HW (2002) Kinetics and mechanism of oxidation of ethylene glycol monobutyl ether by diperiodatocuprate (III) in alkaline medium. Chin J Inorg Chem 18:887–891

    CAS  Google Scholar 

  3. Jose TP, Tuwar SM (2007) Oxidation of threonine by the analytical reagent diperiodatocuprate (III)—an autocatalysed reaction. J Mol Struct 827:137–144

    Article  CAS  Google Scholar 

  4. Shan JH, Wang LP, Shen SG, Sun HW (2003) Kinetics and mechanism of oxidation of some hydroxy butyric acid salts by ditelluratocuprate (III) in alkaline medium. Turk J Chem 27:265–272

    CAS  Google Scholar 

  5. Kumar A, Kumar P, Ramamurthy P (1999) Kinetics of oxidation of glycine and related substrates by diperiodatoargentate (III). Polyhedron 18:773–780

    Article  CAS  Google Scholar 

  6. Veeresh TM, Nandibewoor ST (2008) Thermodynamic quantities for the different steps involved in the mechanism of osmium (VIII) catalysed oxidation of L-lysine by a new oxidant, diperiodatoargentate (III) (stopped flow technique). J Chem Thermodyn 40:284–291

    Article  CAS  Google Scholar 

  7. Shan JH, Qian J, Gao MZ, Shen SG, Sun HW (2004) Kinetics and mechanism of oxidation of n-propanolamine by dihydroxydiperiodatonickelate (IV) in alkaline medium. Turk J Chem 28:9–15

    CAS  Google Scholar 

  8. Shettar RS, Nandibewoor ST (2005) Kinetic, mechanistic and spectral investigations of ruthenium (III)-catalysed oxidation of 4-hydroxycoumarin by alkaline diperiodatonickelate (IV) (stopped flow technique). J Mol Catal A Chem 234:137–143

    Article  CAS  Google Scholar 

  9. Delaude L, Laszlo P, Lehance P (1995) Oxidation of organic substrates with potassium ferrate (VI) in the presence of the K10 montmorillonite. Terrahedron lett 36:8505–8508

    Article  CAS  Google Scholar 

  10. Veeresh TM, Patil RK, Nandibewoor ST (2008) Thermodynamic quantities for the oxidation of ranitidine by diperiodatocuprate (III) in aqueous alkaline medium. Transit Met Chem 33:981–988

    Article  CAS  Google Scholar 

  11. Chimatadar SA, Basavaraj T, Thabaj KA, Nandibewoor ST (2007) Ruthenium (III) catalysed oxidation of gabapentin (neurontin) by diperiodatocuprate (III) in aqueous alkaline medium—a kinetic and mechanistic study. J Mol Catal A Chem 267:65–71

    Article  CAS  Google Scholar 

  12. Kumar A, Kumar P (1999) Kinetics and mechanism of oxidation of nitrilotriacetic acid by diperiodatoargentate (III). J Phys Org Chem 12:79–85

    Article  CAS  Google Scholar 

  13. Hosamani RR, Nandibewoor ST (2009) Mechanistic study of ruthenium (III) catalysed oxidation of L-lysine by diperiodatoargentate (III) in aqueous alkaline medium. J Chem Sci 121:275–281

    Article  CAS  Google Scholar 

  14. Sharma VK, Anquandah GAK, Nesnas N (2009) Kinetics of the oxidation of endocrine disruptor nonylphenol by ferrate (VI). Environ Chem Lett 7:115–119

    Article  CAS  Google Scholar 

  15. Niu WJ, Zhu Y, Hu KC, Tong CL, Yang HS (1996) Kinetics of oxidation of SCN- by diperiodato cuprate (III) (DPC) in alkaline medium. Int J Chem Kinet 28:899–904

    Article  CAS  Google Scholar 

  16. Hiremath DC, Sirsalmath KT, Nandibewoor ST (2008) Osmium(VIII)/ruthenium (III) catalysed oxidation of L-lysine by diperiodatocuprate (III) in aqueous alkaline medium: a comparative mechanistic approach by stopped flow technique. Catal Lett 122:144–154

    Article  CAS  Google Scholar 

  17. Rozovoskii GI, Misyavichyus AK, Prokopchik AY (1975) Reduction of copper (III) in alkaline ditelluratocuprate (III) solutions. Kinet Catal 16:337

    Google Scholar 

  18. Kulkarni SD, Nandibewoor ST (2006) A kinetic and mechanistic study on oxidation of Isoniazid drug by alkaline diperiodatocuprate (III)—a free radical intervention. Transit Met Chem 31:1034–1039

    Article  CAS  Google Scholar 

  19. Liu YH, Liu ZH, Zhang YZ, Deng KL (2003) Graft copolymerizaztion of methyl acrylate onto chitosan initiated by potassium diperiodatocuprate (III). J Appl Polym Sci 89:2283–2289

    Article  CAS  Google Scholar 

  20. Savina IN, Mattiasson B, Galaev IY (2006) Graft polymerization of vinyl monomers inside macroporous polyacrylamide gel, cryogel, in aqueous and aqueous-organic media initiated by diperiodatocuprate (III) complexes. J Polym Sci A Polym Chem 44:1952–1963

    Article  CAS  Google Scholar 

  21. Liu YH, Bai LB, Zhang RY, Li YX, Liu YW, Deng KL (2005) Block copolymerization of poly(ethylene glycol) and methyl acrylate using potassium diperiodatocuprate (III). J Appl Polym Sci 96:2139–2145

    Article  CAS  Google Scholar 

  22. Jose TP, Tuwar SM (2007) Oxidation of threonine by the analytical reagent diperiodatocuprate (III)—an autocatalysed reaction. J Mol Struct 827:137–144

    Article  CAS  Google Scholar 

  23. Li BX, Zhang ZJ, Liu W (2001) Flow-injection chemiluminescence determination of chlortetracycline using on-line electrogenerated [Cu(HIO6)2]5− as the oxidant. Talanta 55:1097–1102

    Article  PubMed  CAS  Google Scholar 

  24. Zhang YT, Zhang ZJ, Sun YH, Wei Y (2007) Development of an analytical method for the determination of β2-agonist residues in animal tissues by high-performance liquid chromatography with on-line electrogenerated [Cu(HIO6)2]5–luminol chemiluminescence detection. J Agric Food Chem 55:4949–4956

    Article  PubMed  CAS  Google Scholar 

  25. Hu YF, Zhang ZJ (2008) Determination of free cholesterol based on a novel flow-injection chemiluminescence method by immobilizing enzyme. Luminescence 23:338–343

    Article  PubMed  Google Scholar 

  26. Hu YF, Zhang ZJ, Yang CY (2007) The determination of hydrogen peroxide generated from cigarette smoke with an ultrasensitive and highly selective chemiluminescence method. Anal Chim Acta 60:95–100

    Article  Google Scholar 

  27. Marquette CA, Blum LJ (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem 385:546–554

    Article  PubMed  CAS  Google Scholar 

  28. Tsukagoshi K, Nakahama K, Nakajima R (2004) Direct detection of biomolecules in a capillary electrophoresis-chemiluminescence detection system. Anal Chem 76:4410–4415

    Article  PubMed  CAS  Google Scholar 

  29. Gámiz-Gracia L, García-Campaña AM, Soto-Chinchilla JJ, Huertas-Pérez JF, González-Casado A (2005) Analysis of pesticides by chemiluminescence detection in the liquid phase. Trends Anal Chem 24:927–942

    Article  Google Scholar 

  30. Fletcher KA, Fakayode SO, Lowry M, Tucker SA, Neal SL, Kimaru IW, McCarroll ME, Patonay G, Oldham PB, Rusin O, Strongin RM, Warner IM (2006) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 78:4047–4068

    Article  PubMed  CAS  Google Scholar 

  31. Chauhan S, Chauhan MS, Kaushal D, Syal VK, Jyoti J (2010) Study of micellar behavior of SDS and CTAB in aqueous media containing furosemide—a cardiovascular drug. J Solution Chem 39:622–638

    Article  CAS  Google Scholar 

  32. Paleos CM, Vassilopoulos G, Nikokavouras J (1982) Chemiluminescence in oriented systems: chemiluminescence of 10, 10’-dimethyl-9, 9’-biacridinium nitrate in micellar media. J Photochem 18:327–334

    Article  CAS  Google Scholar 

  33. Xiao CB, Palmer DA, Wesolowski DJ, Lovitz SB, King DW (2002) Carbon dioxide effects on luminol and 1, 10-phenanthroline chemiluminescence. Anal Chem 74:2210–2216

    Article  PubMed  CAS  Google Scholar 

  34. Yamada M, Suzuki S (1984) Micellar enhanced chemi-luminescence of 1, 10-phenanthroline for the determination of ultratraces of copper (II) by flow-injection method. Anal Lett 17:251–263

    CAS  Google Scholar 

  35. Marrubini G, Calleri E, Coccini T, Castoldi AF, Manzo L (2005) Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection. Chromatographla 62:25–31

    Article  CAS  Google Scholar 

  36. Kang J, Li J, Tang JL, Li MJ, Li XZ, Zhang YH (2010) Sensitized chemiluminescence of Tween 20 on CdTe/H2O2 and its analytical applications for determination of phenolic compounds. Colloid Surf B 76:259–264

    Article  CAS  Google Scholar 

  37. Cui H, He CX, Zhao GW (1999) Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. J Chromatogr A 855:171–179

    Article  PubMed  CAS  Google Scholar 

  38. Ding YP, Liu WL, Wu QS, Wang XG (2005) Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J Electroanal Chem 575:275–280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Tang, J., Han, L. et al. Study of Enhanced Chemiluminescence of Diperiodatocuprate (III) on 1,10-Phenanthroline/Hydrogen Peroxide/Cetyltrimethylammonium Bromide System. J Fluoresc 21, 803–811 (2011). https://doi.org/10.1007/s10895-010-0774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0774-2

Keywords

Navigation