Skip to main content
Log in

Osmium(VIII)/Ruthenium(III) Catalysed Oxidation of l-lysine by Diperiodatocuprate(III) in Aqueous Alkaline Medium: A Comparative Mechanistic Approach by Stopped Flow Technique

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The kinetics of osmium(VIII) and ruthenium(III) catalysed oxidation of l-lysine (l-lys) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.15 mol dm−3 was studied spectrophotometrically. The reaction between l-lys and DPC in alkaline medium exhibits 1:2 stoichiometry in both catalysed reaction (l-lys: DPC). The reaction is first order in [DPC] and has less than unit order both in [l-lys] and [alkali]. Increase in periodate concentration decreases the rate. Intervention of free radicals was observed in the reaction. The main products were identified by spot test, IR and GC-MS studies. Probable mechanisms are proposed and discussed. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. It has been observed that the catalytic efficiency for the present reaction is in the order of Os(VIII)  >  Ru(III). The active species of catalyst and oxidant have been identified.

Graphical Abstract

The kinetic and mechanistic investigations of the reaction between DPC and l-lysine has been studied in presence of microamounts of ruthenium(III) and osmium(VIII) in alkaline medium. The monoperiodatoargentate(III), [Ru(H2O)5OH]2+ and [OsO4(OH)2]2− are considered as the active species of oxidant, DPC, ruthenium(III) and osmium(VIII) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reddy KB, Sethuram B, Navaneeth Rao T (1984) Indian J Chem 23A:593

    CAS  Google Scholar 

  2. Kovat Z (1960) Acta Chim Hung 21:247; Kovat Z (1960) Acta Chim Hung 22:313

  3. Mahadevappa DS, Rangappa KS, Gowda NNM, Thimmegowda B (1986) Int J Chem Kinet 60:589 and references therein

    Google Scholar 

  4. Das AK (2001) Coord Chem Revs 213:307

    Article  CAS  Google Scholar 

  5. Agrawal MC, Upadhyay SK (1994) J Sci Ind Res 42:508; Hugar GH, Nandibewoor ST (1994) Transition Met Chem 19:215

    Google Scholar 

  6. Kiran TS, Hiremath DC, Nandibewoor ST (2006) Z Phys Chem 221:501

    Google Scholar 

  7. Harihar AL, Kembhavi MR, Nandibewoor ST (2000) Indian J Chem 39A:769

    CAS  Google Scholar 

  8. Saxena OC (1967) Microchem J 12:609

    Article  CAS  Google Scholar 

  9. Reddy CS, Vijaya Kumar T (1995) Indian J Chem 34A:615; Kamble DL, Chougale RB, Nandibewoor ST (1996) Indian J Chem 35A:865

  10. Jaiswal PK, Yadava KL (1973) Indian J Chem 11:837; Murthy CP, Sethuram B, Navaneeth Rao T (1981) Z Phys Chem 262:336

  11. Jeffery GH, Bassett J, Mendham J, Denny RC (1996) Vogel’s textbook of quantitative chemical analysis, 5th edn. ELBS, Longman, Essex, p 455

    Google Scholar 

  12. Panigrahi GP, Misro PK (1978) Indian J Chem 16A:201

    CAS  Google Scholar 

  13. Vogel AI (1989) A text book of quantitative chemical analysis, 5th edn. ELBS, Longmen Essex, UK, p 371

    Google Scholar 

  14. Kolthoff IM, Meehan EJ, Carr EM (1953) J Am Chem Soc 75:1439; Bhattacharya S, Banerjee P (1996) Bull Chem Soc Japan 69:3475

    Google Scholar 

  15. Moelwyn-Hughes EA (1947) Kinetics of reaction in solutions. Oxford University Press, London, p 297

    Google Scholar 

  16. Reddy KB, Sethuram B, Navaneeth Rao T (1987) Z Phys Chem 268:706

    CAS  Google Scholar 

  17. Bailar JC Jr, Emeleus HJ, Nyholm SR, Trotman- Dikenson AF (1975) Comprehensive inorganic chemistry, vol 2. Pergamon press, Oxford, p 1456

    Google Scholar 

  18. Sethuram B (2003) Some aspects of electron transfer reactions involving organic molecules. Allied Publishers, New Delhi, p 78

    Google Scholar 

  19. Reddy KB, Sethuram B, Navaneeth Rao T (1981) Indian J Chem 20A:395; Murthy CP, Sethuram B, Reddy KB, Navaneeth Rao T (1984) Indian J Chem 23A:593

  20. Cotton FA, Wilkinson G (1996) Advanced inorganic chemistry. New York, Wiley Eastern, p 153; Singh HS, Singh RK, Singh SM, Sisodia AK (1977) J Phy Chem 81:1044

  21. Chimatadar SA, Kini AK, Nandibewoor ST (2005) Inorg React Mech 5:231; Desai SM, Halligudi NN, Nandibewoor ST (2002) Transition Met Chem 27:207

  22. Chang R (1981) Physical chemistry with applications to biological systems. Macmillan, New York, p 326

    Google Scholar 

  23. Lister MW (1953) Can J Chem 31:638

    Article  CAS  Google Scholar 

  24. Thimmegowda B, Ishwarabhat J (1989) Indian J Chem 28A:43; Bilehal DC, Kulkarni RM, Nandibewoor ST (2003) Z Phys Chem 217:1; Bellakki MB, Mahesh RT, Nandibewoor ST, Jaky M (2005) Proc Nat Acad Sci India 75:177

  25. Kamble DL, Nandibewoor ST (1998) J Phys Org Chem 11:171

    Article  CAS  Google Scholar 

  26. Szeverenyi M, Simandi LI (1991) Inorg Chim Acta 186:33; Lott KAK, Symons MCR (1960) Discuss Faraday Soc 29:205; Chougale RB, Hiremath GA, Nandibewoor ST (1997) Polish J Chem 71:1471

  27. Rangappa KS, Raghavendra MP, Mahadevappa DS, Channegouda D (1998) J Org Chem 63:531; Bilehal DC, Kulkarni RM, Nandibewoor ST (2001) Can J Chem 79:1926

  28. Weissberger A, Lewis ES (eds) (1974) Investigations of rates and mechanism of reactions in techniques of chemistry, vol 4. Wiley, New York, p 421

    Google Scholar 

  29. Martinez M, Pitarque MA, Eldik RV (1996) J Chem Soc Dalton Trans 2665; Farokhi SA, Nandibewoor ST (2003) Tetrahedron, 59:7595

  30. Walling C (1957) Free radicals in solution. Academic Press, New York, p 38

    Google Scholar 

Download references

Acknowledgments

The authors thank the UGC, New Delhi, for the sanction of research grant (F.30-66/2004(SR) dated 10-11-2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Appendix A

Appendix A

According to Scheme 2

$$ \begin{aligned} \hbox{Rate} =& \hbox{k[C]} [\hbox{Cu}(\hbox{H}_{3}\hbox{IO}_{6})(\hbox{OH})_{2}]^-\\ =&\frac{\hbox{kK}_{1}K_{2}K_{3}\hbox{[DPC][Ru(III)]} [\hbox{OH}^-][{\sc l}\hbox{-Lys]}}{[\hbox{H}_{3}\hbox{IO}_{6}^{2-}]}\\ \end{aligned} $$
(I)

The total concentration of DPC is given by (Where T and f stands for total and free)

$$ \begin{aligned} \hbox{[DPC]}_{\rm T} =& \hbox{[DPC]}_{\rm f} + [\hbox{Cu}(\hbox{OH})_{2}(\hbox{H}_{3}\hbox{IO}_{6}) (\hbox{H}_{2}\hbox{IO}_{6})]^{4-} + [\hbox{Cu}(\hbox{H}_{3}\hbox{IO}_{6})(\hbox{OH})_{2}]^-\\ =&\hbox{[DPC]}_{\rm f}\left\{\frac{[\hbox{H}_{3}\hbox{IO}_{6}^{2-}] + K_{1} [\hbox{OH}^-][\hbox{H}_{3}\hbox{IO}_{6}^{2-}] + K_1K_2[\hbox{OH}^-]}{[\hbox{H}_3\hbox{IO}_6^{2-}]}\right\}\\ \end{aligned} $$

Therefore,

$$ \hbox{[DPC]}_{\rm f} =\frac{\hbox{[DPC]}_{\rm T}[\hbox{H}_{2}\hbox{IO}_{6}^{3-}]}{ [\hbox{H}_{3}\hbox{IO}_{6}^{2-}] + K_{1} [\hbox{OH}^-] [\hbox{H}_{3}\hbox{IO}_{6}^{2-}] + K_1K_2[\hbox{OH}^-]} $$
(II)

Similarly,

$$ \begin{aligned} \hbox{[OH]}_{\rm T} =& \hbox{[OH]}_{\rm f} + [\hbox{Cu}(\hbox{OH})_{2}(\hbox{H}_{3}\hbox{IO}_{6}) (\hbox{H}_{2}\hbox{IO}_{6})]^{4-} + [\hbox{Cu}(\hbox{H}_{3}\hbox{IO}_{6})(\hbox{OH})_{2}]^-\\ =& \hbox{[OH]}_{\rm f} + K_{1}\hbox{[DPC]}[\hbox{OH}^-] + \frac{K_1K_2\hbox{[PDC]}[\hbox{OH}^-]}{ [\hbox{H}_{3}\hbox{IO}_{6}^{2-}]}\\ \end{aligned} $$

In view of the low concentration of [DPC] and [H3IO 2−6 ] used,

$$ \hbox{[OH]}_{\rm T}= \hbox{[OH]}^{\rm f} $$
(III)

Similarly,

$$ \begin{aligned}[{\sc l}\hbox{-lys}]_{\rm T} =& [{\sc l}\hbox{-lys}]_{\rm f} +\hbox{[C]}\\ =& [{\sc l}\hbox{-lys}]_{\rm f} (1 + K_{3}\hbox{[Ru(III)]})\\ \end{aligned} $$

In view of the low concentration of [Ru(III)]) used,

$$ [{\sc l}\hbox{-lys}]_{\rm T} = [{\sc l}\hbox{-lys}]_{\rm f} $$
(IV)
$$ \begin{aligned} \hbox{[Ru(III)]}_{\rm T}=& \hbox{[Ru(III)]}_{\rm f} + \hbox{C}\\ =& \hbox{[Ru(III)]}_{\rm f} \{1+ K_{3} [{\sc l}\hbox{-lys}]\}\\ \end{aligned} $$
$$ \hbox{[Ru(III)]}_{\rm f} \frac{\hbox{[Ru(III)]}_{\rm T}} {1+ K_{3} [{\sc l}\hbox{-Lys}]} $$
(V)

Substituting (II), (III), (IV) and (V) in (I) and omitting the subscripts T and f, we get

$$ \frac{\hbox{Rate}}{\hbox{[DPC]}}= K_{\rm C}= k_{\rm T}-k_{\rm U} =\frac{\hbox{kK}_{1}{K}_{2}K_{3} [{\sc l}\hbox{-Lys}][\hbox{OH}^-][\hbox{Ru(III)}]} {[\hbox{H}_{3}\hbox{IO}_{6}^{2-}] + K_{1} [\hbox{OH}^-] [\hbox{H}_{3}\hbox{IO}_{6}^{2-}] + K_{1}K_{2}[\hbox{OH}^-] + K_1K_2 K_3[\hbox{OH}^-][{\sc l}\hbox{-Lys}]} $$

Similarly for Os(VIII) catalysis, the rate law can be derived.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiremath, D.C., Sirsalmath, K.T. & Nandibewoor, S.T. Osmium(VIII)/Ruthenium(III) Catalysed Oxidation of l-lysine by Diperiodatocuprate(III) in Aqueous Alkaline Medium: A Comparative Mechanistic Approach by Stopped Flow Technique. Catal Lett 122, 144–154 (2008). https://doi.org/10.1007/s10562-007-9361-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9361-9

Keywords

Navigation