Skip to main content
Log in

Immobilization and Characterization of 2,3-diaminonaphthalene/cyclodextrin Complexes in a Sol–Gel Matrix: A New Fluorimetric Sensor for Nitrite

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The aromatic diamino compound 2,3-diaminonaphthalene (DAN) has been extensively used to detect and quantify nitrite ions in biological and environmental samples. We have immobilized the DAN reagent in a porous silicate glass matrix, via previous incorporation of the dye in HP-β-CD. Changes in fluorescence intensity were used to characterize the inclusion complexes and determine the association constant and stoichiometry of the process. Fluorescence spectrum of these complexes was also used to monitor their immobilization within the sol–gel matrix. Reactivity of the immobilized complexes was evaluated with increasing concentrations of nitrite up to 10 μM (with a detection limit around 20 nM). Results show that sol–gel immobilization does not modify the reactivity of the dye against nitrite and serves to prepare a highly sensitive ready to use fluorescence-based sensor for the specific measurement of nitrite at submicromolar concentrations with no further sample pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAN:

2,3-Diaminonaphthalene

NATH:

1-(H)-Naphthotriazole

NAT:

2,3-Naphthotriazole Anion

TEOS:

Tetraethyl orthosilicate

β-CD:

β-Cyclodextrin

HP-β-CD:

2-Hydroxypropyl-β-Cyclodextrin

References

  1. Bryan NS (2006) Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med 41(5):691–701

    Article  PubMed  CAS  Google Scholar 

  2. Damiani P, Burini G (1986) Fluorometric determination of nitrite. Talanta 33(8):649–652

    Article  PubMed  CAS  Google Scholar 

  3. Mahieuxe B, Carré MC, Viriot ML, André JC, Donner M (1994) Fiber-optic fluorescing sensors for nitrate and nitrite detection. J Fluoresc 4(1):7–10

    Article  CAS  Google Scholar 

  4. Grisham MB, Johnson GG, Lancaster JR Jr (1996) Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol 268:237–246

    Article  PubMed  CAS  Google Scholar 

  5. Jobgen WS, Jobgen SC, Li H, Meininger CJ, Wu G (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82

    Article  CAS  Google Scholar 

  6. Sousa AL, Santos WJ, Luz RC, Damos FS, Kubota LT, Tanaka AA, Tanaka SM (2008) Amperometric sensor for nitrite based on copper tetrasulphonated phthalocyanine immobilized with poly-l-lysine film. Talanta 75(2):333–338

    Article  PubMed  CAS  Google Scholar 

  7. Zhu X, Lin X (2007) Novel nitrite sensing using a palladium-polyphenosafranine nano-omposite. Anal Sci 23(8):981–985

    Article  PubMed  CAS  Google Scholar 

  8. Boo YC, Tressel SL, Jo H (2007) An improved method to measure nitrate/nitrite with an NO-selective electrochemical sensor. Nitric Oxide 16(2):306–312

    Article  PubMed  CAS  Google Scholar 

  9. Huang KJ, Wang H, Guo YH, Fan RL, Zhang HS (2006) Spectrofluorimetric determination of trace nitrite in food product with a new fluorescent probe 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3¢,4¢-diaminophenyl)-difluoroboradoaza-s-indacene. Talanta 69:73–78

    Article  PubMed  CAS  Google Scholar 

  10. Gomes A, Fernandes E, Lima JLFC (2006) Use of fluorescence probes for detection of reactive nitrogen species: a review. J Fluoresc 16:119–130

    Article  PubMed  CAS  Google Scholar 

  11. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B 851:51–70

    Article  CAS  Google Scholar 

  12. Sun J, Zhang X, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using griess reaction assay. Sensors 3:276–284

    Article  CAS  Google Scholar 

  13. Nussler AK, Glanemann M, Schirmeier A, Liu L, Nüssler NC (2006) Fluorometric measurement of nitrite/nitrate by 2,3-diaminonaphthalene. Nat Protoc 1(5):2223–2226

    Article  PubMed  CAS  Google Scholar 

  14. Kleinhenz DJ, Fan X, Rubin J, Hart CM (2003) Detection of endothelial nitric oxide release with the 2,3-diaminonapthalene assay. Free Radic Biol Med 34(7):856–861

    Article  PubMed  CAS  Google Scholar 

  15. Li H, Meininger CJ, Wu G (2000) Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr B 746:199–207

    Article  CAS  Google Scholar 

  16. Marzinzig M, Nussler AK, Stadler J, Marzinzig E, Barthlen W, Nussler NC, Beger HG, Morris SM, Brückner UB (1997) Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, and S-nitrosothiols. Nitric Oxide 1(2):177–189

    Article  PubMed  CAS  Google Scholar 

  17. Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214(1):11–16

    Article  PubMed  CAS  Google Scholar 

  18. Bedwell DW, Rivera VR, Merrill GA, Pusateri AE (2000) Elimination of matrix-based interferences to a fluorescent nitrite/nitrate assay by a simple filtration procedure. Anal Biochem 284(1):1–5

    Article  PubMed  CAS  Google Scholar 

  19. Fernández-Cancio M, Fernández-Vitos EM, Centelles JJ, Imperial S (2001) Sources of interference in the use of 2,3-diaminonaphthalene for the fluorimetric determination of nitric oxide synthase activity in biological samples. Clin Chim Acta 312:205–212

    Article  PubMed  Google Scholar 

  20. Carré MC, Mahieuxe B, André JC, Viriot ML (1999) Fluorimetric nitrite analysis using 2,3-diaminonaphthalene: an improvement of the method. Analusis 27(10):835–838

    Article  Google Scholar 

  21. Kandimalla VB, Tripathi VS, Ju H (2006) Immobilization of biomolecules in sol–gels: biological and analytical applications. Crit Rev Anal Chem 36(2):73–106

    Article  CAS  Google Scholar 

  22. Gadre SY, Gouma PI (2006) Biodoped ceramics: synthesis, properties, and applications. J Am Ceram Soc 89(10):2987–3002

    Article  CAS  Google Scholar 

  23. Dunn B, Zink JI (2007) Molecules in glass: probe, ordered assemblies and functional materials. Acc Chem Res 40(9):747–755

    Article  PubMed  CAS  Google Scholar 

  24. Zaggout FR, El-Nahhal IM, Zourab SM, El-Ashgar NM, El-Dawahedy N, Motaweh H (2005) Encapsultion of methyl red pH-indicator into a sol–gel matrix. J Dispers Sci Technol 26:629–633

    Article  CAS  Google Scholar 

  25. Zaggout FR, Qaraman AEA, Zourab SM, Azzeez HA (2006) Spectrophotometric studies of entrapped thymol phtalein ph indicator into sol–gel matrix. J Dispers Sci Technol 27:1003–1007

    Article  CAS  Google Scholar 

  26. Schulz-Ekloff G, Wöhrle D, van Duffel B, Schoonheydt RA (2002) Chromophores in porous silicas and minerals: preparation and optical properties. Microporous Mesoporous Mater 51:91–138

    Article  CAS  Google Scholar 

  27. Zaggout FR, El-Ashgar NM, Zourab SM, El-Nahhal IM, Motaweh H (2005) Encapsulation of methyl orange pH-indicator into a sol–gel matrix. Mater Lett 59:2928–2931

    Article  CAS  Google Scholar 

  28. Martinez-Pérez D, Ferrer ML, Mateo CR (2003) A reagent less fluorescent sol–gel biosensor for uric acid detection in biological fluids. Anal Biochem 322(2):238–242

    Article  PubMed  CAS  Google Scholar 

  29. Pastor I, Esquembre R, Micol V, Mallavia R, Mateo CR (2004) A ready-to-use fluorimetric biosensor for superoxide radical using superoxide dismutase and peroxidase immobilized in sol–gel glasses. Anal Biochem 334(2):335–343

    Article  PubMed  CAS  Google Scholar 

  30. Senarath-Yapa MD, Scott Saavedra S (2001) Dye leaching from a doped sol–gel is eliminated by conjugation to a dendrimer. Anal Chim Acta 432(1):89–94

    Article  CAS  Google Scholar 

  31. Nguyen T, McNamara KP, Rosenzweig Z (1999) Optochemical sensing by immobilizing fluorophore-encapsulating liposomes in sol–gel thin films. Anal Chim Acta 400:45–54

    Article  CAS  Google Scholar 

  32. Skrdla PJ, Saavedra SS, Armstrong NR (1999) Reduction of indicator leaching from doped sol–gels by attachment of macromolecular carriers. Appl Spectrosc 53(7):785–791

    Article  CAS  Google Scholar 

  33. Esquembre R, Pastor I, Mallavia R, Mateo CR (2005) Detection of nitric oxide using 2,3- diaminonaphthalene incorporated in β-cyclodextrin. J Photochem Photobiol A Chem 173:384–389

    Article  CAS  Google Scholar 

  34. Coly A, Aaron JJ (1998) Cyclodextrin-enhanced fluorescence and photochemically induced fluorescence determination of five aromatic pesticides in water. Anal Chim Acta 360:129–141

    Article  CAS  Google Scholar 

  35. Almansa López E, Bosque-Sendra JM, Cuadros Rodríguez L, García Campaña AM, Aaron JJ (2003) Applying non-parametric statistical methods to the classical measurements of inclusion complex binding constants. Anal Bioanal Chem 375(3):414–423

    PubMed  Google Scholar 

  36. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71(8):2703–2707

    Article  CAS  Google Scholar 

  37. Pannala AS, Mani AR, Spencer JPE, Skinner V, Bruckdorfer KR, Moore KP, Rice-Evans CA (2003) The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic Biol Med 34(5):576–584

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Spanish DGI of the Ministerio de Educación y Ciencia (MEC) for grant MAT2005-01004. Rocio Esquembre acknowledges the support of a predoctoral fellowship from MEC. We are grateful for the useful insights obtained in discussions with Dr. Marisa Ferrer and Dr. Isabel Pastor. We thank David Olmo for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Mateo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Tomé, M.J., Esquembre, R., Mallavia, R. et al. Immobilization and Characterization of 2,3-diaminonaphthalene/cyclodextrin Complexes in a Sol–Gel Matrix: A New Fluorimetric Sensor for Nitrite. J Fluoresc 19, 119–125 (2009). https://doi.org/10.1007/s10895-008-0393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0393-3

Keywords

Navigation