Skip to main content
Log in

Use of Fluorescence Probes for Detection of Reactive Nitrogen Species: A Review

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

The biological and toxicological effects that have been attributed to reactive nitrogen species (RNS) are increasingly stirring the scientific inquisitiveness about the molecular mechanisms involved. However, RNS present some characteristics that complicate their detection, namely their short lifetime and the normal presence of a variety of endogenous compounds capable of reacting with these reactive species, when the studies are performed in biological matrices. The development of methodologies capable of circumvent these difficulties is thus of fundamental importance. Fluorescence probes are particularly important due to their high sensibility and usefulness in temporal and spatial monitoring of RNS, particularly in microanalysis conditions in biological media akin to cells or tissues. In the present review is given an account of the fluorescence probes that have been used for detection of nitric oxide (NO), peroxynitrite anion (ONOO), as well as of some of its derivatives in biological and nonbiological media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. M. P. Fink (2002). Role of reactive oxygen species in acute respiratory distress syndrome. Curr. Opin. Crit. Care 8, 6–11.

    Article  PubMed  Google Scholar 

  2. T. P. A. Devasagayam, J. C. Tilak, K. K. Boloor, K. S. Sane, S. S. Ghaskadbi, and R. D. Lele (2004). Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Phys. India 52, 794–804.

    CAS  Google Scholar 

  3. M. P. Murphy, M. A. Packer, J. L. Scarlett, and S. W. Martin (1998). Peroxynitrite: A biologically significant oxidant. Gen. Pharmacol. 31, 179–186.

    Article  PubMed  CAS  Google Scholar 

  4. O. von Bohlen und Halbach (2003). Nitric oxide imaging in living neuronal tissues using fluorescent probes. Nitric Oxide 9, 217–228.

    Article  PubMed  CAS  Google Scholar 

  5. P. C. Dedon and S. R. Tannenbaum (2004). Reactive nitrogen species in the chemical biology of inflammation. Arch. Biochem. Biophys. 423, 12–22.

    Article  PubMed  CAS  Google Scholar 

  6. S. Moncada, R. M. J. Palmer, and E. A. Higgs (1991). Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142.

    PubMed  CAS  Google Scholar 

  7. H. J. Forman, J. M. Fukuto, and M. Torres (2004). Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am. J. Physiol. Cell Physiol. 287, C246–C256.

    Article  PubMed  CAS  Google Scholar 

  8. P. Kostka (1995). Free radicals (nitric oxide). Anal. Chem. 67, 411R–416R.

    Article  PubMed  CAS  Google Scholar 

  9. L. J. Hofseth, S. P. Hussain, G. N. Wogan, and C. C. Harris (2003). Nitric oxide in cancer and chemoprevention. Free Radic. Biol. Med. 34, 955–968.

    Article  PubMed  CAS  Google Scholar 

  10. A. K. Nussler and T. R. Billiar (1993). Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol. 54, 171–178.

    PubMed  CAS  Google Scholar 

  11. N. Miyasaka and Y. Hirata (1997). Nitric oxide and inflammatory arthritides. Life Sci. 61, 2073–2081.

    Article  PubMed  CAS  Google Scholar 

  12. T. Esch, G. B. Stefano, G. L. Fricchione, and H. Benson (2002). Stress-related diseases—A potential role for nitric oxide. Med. Sci. Monit. 8, RA103–RA118.

    PubMed  CAS  Google Scholar 

  13. R. E. Huie and S. Padmaja (1993). The reaction of NO with superoxide. Free Radic. Res. Commun. 18, 195–199.

    Article  PubMed  CAS  Google Scholar 

  14. S. Goldstein and G. Czapski (1995). The reaction of NO with O2 ⋅− and HO2 : A pulse radiolysis study. Free Radic. Biol. Med. 19, 505–510.

    Article  PubMed  CAS  Google Scholar 

  15. R. Kissner, T. Nauser, P. Bugnon, P. G. Lye, and W. H. Koppenol (1997). Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol. 10, 1285–1292.

    Article  PubMed  CAS  Google Scholar 

  16. R. Radi, A. Cassina, R. Hodara, C. Quijano, and L. Castro (2002). Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med. 33, 1451–1464.

    Article  PubMed  CAS  Google Scholar 

  17. B. Alvarez and R. Radi (2003). Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25, 295–311.

    Article  PubMed  CAS  Google Scholar 

  18. A. Denicola, J. M. Souza, and R. Radi (1998). Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. U.S.A. 95, 3566–3571.

    Article  PubMed  CAS  Google Scholar 

  19. U. Ketsawatsakul, M. Whiteman, and B. Halliwell (2000). A reevaluation of peroxynitrite scavenging activity of some dietary phenolics. Biochem. Biophys. Res. Commun. 279, 692–699.

    Article  PubMed  CAS  Google Scholar 

  20. J. W. Coddington, J. K. Hurst, and S. V. Lymar (1999). Hydroxyl radical formation during peroxynitrous acid decomposition. J. Am. Chem. Soc. 121, 2438–2443.

    Article  CAS  Google Scholar 

  21. J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A. 87, 1620–1624.

    PubMed  CAS  Google Scholar 

  22. O. Augusto, R. M. Gatti, and R. Radi (1994). Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: Direct evidence for metal-independent formation of free radical intermediates. Arch. Biochem. Biophys. 310, 118–125.

    Article  PubMed  CAS  Google Scholar 

  23. R. Radi, T. P. Cosgrove, J. S. Beckman, and B. A. Freeman (1993). Peroxynitrite-induced luminol chemiluminescence. Biochem. J. 290, 51–57.

    PubMed  CAS  Google Scholar 

  24. S. V. Lymar and J. K. Hurst (1995). Rapid reaction between peroxynitrite ion and carbon dioxide: Implications for biological activity. J. Am. Chem. Soc. 117, 8867–8868.

    Article  CAS  Google Scholar 

  25. M. G. Espey, K. M. Miranda, D. D. Thomas, S. Xavier, D. Citrin, M. P. Vitek, and D. A. Wink (2002). A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. Ann. N. Y. Acad. Sci. 962, 195–206.

    PubMed  CAS  Google Scholar 

  26. S. L. Kohnen, A. A. Mouithys-Mickalad, G. P. Deby-Dupont, C. M. Deby, P. Hans, M. L. Lamy, and A. F. Noels (2003). Investigation of the reaction of peroxynitrite with propofol at acid pH: Predominant production of oxidized, nitrated, and halogenated derivatives. Nitric Oxide 8, 170–181.

    Article  PubMed  CAS  Google Scholar 

  27. G. L. Squadrito and W. A. Pryor (1998). Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 25, 392–403.

    Article  PubMed  CAS  Google Scholar 

  28. D. Jourd'heuil, K. M. Miranda, S. M. Kim, M. G. Espey, Y. Vodovotz, S. Laroux, C. T. Mai, A. M. Miles, M. B. Grisham, and D. A. Wink (1999). The oxidative and nitrosative chemistry of the nitric oxide/superoxide reaction in the presence of bicarbonate. Arch. Biochem. Biophys. 365, 92–100.

    Article  PubMed  Google Scholar 

  29. A. Denicola, B. A. Freeman, M. Trujillo, and R. Radi (1996). Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations. Arch. Biochem. Biophys. 333, 49–58.

    Article  PubMed  CAS  Google Scholar 

  30. R. Radi, J. S. Beckman, K. M. Bush, and B. A. Freeman (1991). Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288, 481–487.

    Article  PubMed  CAS  Google Scholar 

  31. R. Radi, J. S. Beckman, K. M. Bush, and B. A. Freeman (1991). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250.

    PubMed  CAS  Google Scholar 

  32. A. Van der Vliet, D. Smith, C. A. O'Neill, H. Kaur, V. Darley-Usmar, C. E. Cross, and B. Halliwell (1994). Interactions of peroxynitrite with human plasma and its constituents: Oxidative damage and antioxidant depletion. Biochem. J. 303, 295–301.

    PubMed  CAS  Google Scholar 

  33. H. Ischiropoulos and A. B. Al-Mehdi (1995). Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 364, 279–282.

    Article  PubMed  CAS  Google Scholar 

  34. V. Yermilov, Y. Yoshie, J. Rubio, and H. Ohshima (1996). Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett. 399, 67–70.

    Article  PubMed  CAS  Google Scholar 

  35. J. P. Spencer, J. Wong, A. Jenner, O. I. Aruoma, C. E. Cross, and B. Halliwell (1996). Base modification and strand breakage in isolated calf thymus DNA and in DNA from human skin epidermal keratinocytes exposed to peroxynitrite or 3-morpholinosydnonimine. Chem. Res. Toxicol. 9, 1152–1158.

    Article  PubMed  CAS  Google Scholar 

  36. K. Kikugawa, K. Hiramoto, S. Tomiyama, and Y. Asano (1997). β-Carotene effectively scavenges toxic nitrogen oxide: Nitrogen dioxide and peroxynitrous acid. FEBS Lett. 404, 175–178.

    Article  PubMed  CAS  Google Scholar 

  37. W. A. Pryor and G. L. Squadrito (1995). The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L722.

    PubMed  CAS  Google Scholar 

  38. M. Kirsch and H. de Groot (1999). Reaction of peroxynitrite with reduced nicotinamide nucleotides, the formation of hydrogen peroxide. J. Biol. Chem. 274, 24664–24670.

    Article  PubMed  CAS  Google Scholar 

  39. M. Kirsch and H. de Groot (2000). Ascorbate is a potent antioxidant against peroxynitrite-induced oxidation reactions. J. Biol. Chem. 275, 16702–16708.

    Article  PubMed  CAS  Google Scholar 

  40. W. A. Pryor, X. Jin, and G. L. Squadrito (1994). One- and two-electron oxidations of methionine by peroxynitrite. Proc. Natl. Acad. Sci. U.S.A. 91, 11173–11177.

    PubMed  CAS  Google Scholar 

  41. J. J. Moreno and W. A. Pryor (1992). Inactivation of α1-proteinase inhibitor by peroxynitrite. Chem. Res. Toxicol. 5, 425–431.

    Article  PubMed  CAS  Google Scholar 

  42. B. Halliwell, K. Zhao, and M. Whiteman (1999). Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good. A personal view of recent controversies. Free Radic. Res. 31, 651–669.

    PubMed  CAS  Google Scholar 

  43. S. B. Digerness, K. D. Harris, J. W. Kirklin, F. Urthaler, L. Viera, J. S. Beckman, and V. Darley-Usmar (1999). Peroxynitrite irreversibly decreases diastolic and systolic function in cardiac muscle. Free Radic. Biol. Med. 27, 1386–1392.

    Article  PubMed  CAS  Google Scholar 

  44. S. K. Wattanapitayakul, D. M. Weinstein, B. J. Holycross, and J. A. Bauer (2000). Endothelial dysfunction and peroxynitrite formation are early events in angiotensin-induced cardiovascular disorders. FASEB J. 14, 271–278.

    PubMed  CAS  Google Scholar 

  45. S. G. Hashjin, G. Folkerts, P. A. Henricks, R. B. Muijsers, and F. P. Nijkamp (1998). Peroxynitrite in airway diseases. Clin. Exp. Allergy 28, 1464–1473.

    Article  PubMed  Google Scholar 

  46. J. S. Beckman (1996). Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836–844.

    Article  PubMed  CAS  Google Scholar 

  47. A. G. Estévez, J. P. Crow, J. B. Sampson, C. Reiter, Y. Zhuang, G. J. Richardson, M. M. Tarpey, L. Barbeito, and J. S. Beckman (1999). Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286, 2498–2500.

    Article  PubMed  Google Scholar 

  48. N. Soh, Y. Katayama, and M. Maeda (2001). A fluorescent probe for monitoring nitric oxide production using a novel detection concept. Analyst 126, 564–566.

    Article  PubMed  CAS  Google Scholar 

  49. K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano (2001). Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J. Am. Med. Soc. 123, 2530–2536.

    Article  CAS  Google Scholar 

  50. T. Nagano (1999). Practical methods for detection of nitric oxide. Luminescence 14, 283–290.

    Article  PubMed  CAS  Google Scholar 

  51. M. M. Tarpey, D. A. Wink, and M. B. Grisham (2004). Methods for detection of reactive metabolites of oxygen and nitrogen: In vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R431–R444.

    PubMed  CAS  Google Scholar 

  52. T. P. Misko, R. J. Schilling, D. Salvemini, W. M. Moore, and M. G. Currie (1993). A fluorometric assay for the measurement of nitrite in biological samples. Anal. Biochem. 214, 11–16.

    Article  PubMed  CAS  Google Scholar 

  53. N. Nakatsubo, H. Kojima, K. Sakurai, K. Kikuchi, H. Nagoshi, Y. Hirata, T. Akaike, H. Maeda, Y. Urano, T. Higuchi, and T. Nagano (1998). Improved nitric oxide detection using 2,3-diaminonaphthalene and its application to the evaluation of novel nitric oxide synthase inhibitors. Biol. Pharm. Bull. 21, 1247–1250.

    PubMed  CAS  Google Scholar 

  54. L. Gonzalez-Santiago, S. Lopez-Ongil, M. Rodriguez-Puyol, and D. Rodriguez-Puyol (2002). Decreased nitric oxide synthesis in human endothelial cells cultured on type I collagen. Circ. Res. 90, 539–545.

    Article  PubMed  CAS  Google Scholar 

  55. D. J. Kleinhenz, X. Fan, J. Rubin, and C. M. Hart (2003). Detection of endothelial nitric oxide release with the 2,3-diaminonapthalene assay. Free Radic. Biol. Med. 34, 856–861.

    Article  PubMed  CAS  Google Scholar 

  56. R. Esquembre, I. Pastor, R. Mallavia, and C. R. Mateo (2005). Fluorometric detection of nitric oxide using 2,3-diaminonaphthalene incorporated in β-cyclodextrin. J. Photochem. Photobiol. A 173, 384–389.

    Article  CAS  Google Scholar 

  57. J. K. J. Park and P. Kostka (1997). Fluorometric detection of biological S-nitrosothiols. Anal. Biochem. 249, 61–66.

    Article  PubMed  CAS  Google Scholar 

  58. M. Kirsch and H. de Groot (2002). Formation of peroxynitrite from reaction of nitroxyl anion with molecular oxygen. J. Biol. Chem. 277, 13379–13388.

    Article  PubMed  CAS  Google Scholar 

  59. H. Kojima, K. Sakurai, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, and T. Nagano (1998). Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem. Pharm. Bull. 46, 373–375.

    PubMed  CAS  Google Scholar 

  60. H. Kojima, N. Kakatsubo, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, and T. Nagano (1998). Detection and imaging of nitric oxide with novel fluorescent indicators: Diaminofluoresceins. Anal. Chem. 70, 2446–2453.

    Article  PubMed  CAS  Google Scholar 

  61. N. Nakatsubo, H. Kojima, K. Kikuchi, H. Nagoshi, Y. Hirata, D. Maeda, Y. Imai, T. Irimura, and T. Nagano (1998). Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: Diaminofluoresceins. FEBS Lett. 427, 263–266.

    Article  PubMed  CAS  Google Scholar 

  62. N. Suzuki, H. Kojima, Y. Urano, K. Kikuchi, Y. Hirata, and T. Nagano (2002). Orthogonality of calcium concentration and ability of 4,5-diaminofluorescein to detect NO. J. Biol. Chem. 277, 47–49.

    Article  PubMed  CAS  Google Scholar 

  63. C. Munkholm, D. R. Parkinson, and D. R. Walt (1990). Intramolecular fluorescence self-quenching of fluoresceinamine. J. Am. Chem. Soc. 112, 2608–2612.

    Article  CAS  Google Scholar 

  64. A. R. Kim, Y. Zou, H. S. Kim, J. S. Choi, G. Y. Chang, Y. J. Kim, and H. Y. Chung (2002). Selective peroxynitrite scavenging activity of 3-methyl-1,2-cyclopentanedione from coffee extract. J. Pharm. Pharmacol. 54, 1385–1392.

    Article  PubMed  CAS  Google Scholar 

  65. E. Fernandes, S. A. Toste, J. L. F. C. Lima, and S. Reis (2003). The metabolism of sulindac enhances its scavenging activity against reactive oxygen and nitrogen species. Free Radic. Biol. Med. 35, 1008–1017.

    Article  PubMed  CAS  Google Scholar 

  66. E. Fernandes, D. Costa, S. A. Toste, J. L. F. C. Lima, and S. Reis (2004). In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radic. Biol. Med. 37, 1895–1905.

    Article  PubMed  CAS  Google Scholar 

  67. M. G. Espey, K. M. Miranda, D. D. Thomas, and D. A. Wink (2002). Ingress and reactive chemistry of nitroxyl-derived species within human cells. Free Radic. Biol. Med. 33, 827–834.

    Article  PubMed  CAS  Google Scholar 

  68. X. Zhang, W. S. Kim, N. Hatcher, K. Potgieter, L. L. Moroz, R. Gillette, and J. V. Sweedler (2002). Interfering with nitric oxide measurements. 4,5-Diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid. J. Biol. Chem. 277, 48472–48478.

    Article  PubMed  CAS  Google Scholar 

  69. N. Nagata, K. Momose, and Y. Ishida (1999). Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J. Biochem. 125, 658–661.

    PubMed  CAS  Google Scholar 

  70. J. Rodriguez, V. Specian, R. Maloney, D. Jourd'heuil, and M. Feelisch (2005). Performance of diamino fluorophores for the localization of sources and targets of nitric oxide. Free Radic. Biol. Med. 38, 356–368.

    Article  PubMed  CAS  Google Scholar 

  71. X. Ye, W. S. Kim, S. S. Rubakhin, and J. V. Sweedler (2004). Measurement of nitric oxide by 4,5-diaminofluorescein without interferences. Analyst 129, 1200–1205.

    Article  PubMed  CAS  Google Scholar 

  72. D. Jourd'heuil (2002). Increased nitric oxide-dependent nitrosylation of 4,5-diaminofluorescein by oxidants: Implications for the measurement of intracellular nitric oxide. Free Radic. Biol. Med. 33, 676–684.

    Article  PubMed  Google Scholar 

  73. H. Kojima, M. Hirotani, N. Kakatsubo, K. Kikuchi, Y. Urano, T. Higuchi, Y. Hirata, and T. Nagano (2001). Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973.

    Article  PubMed  CAS  Google Scholar 

  74. T. Imura, S. Kanatani, S. Fukuda, Y. Miyamoto, and T. Hisatsune (2004). Layer-specific production of nitric oxide during cortical circuit formation in postnatal mouse brain. Cereb. Cortex 21, 1–9.

    Google Scholar 

  75. P. Heiduschka and S. Thanos (1998). NO production during neuronal cell death can be directly assessed by a chemical reaction in vivo. Neuroreport 9, 4051–4057.

    PubMed  CAS  Google Scholar 

  76. O. von Bohlen und Halbach, D. Albrecht, U. Heinemann, and S. Schuchmann (2002). Spatial nitric oxide imaging using 1,2-diaminoanthraquinone to investigate the involvement of nitric oxide in long-term potentiation in rat brain slices. Neuroimage 15, 633–639.

    Article  PubMed  Google Scholar 

  77. X. Chen, C. Sheng, and X. Zheng (2001). Direct nitric oxide imaging in cultured hippocampal neurons with diaminoanthraquinone and confocal microscopy. Cell Biol. Int. 25, 593–598.

    Article  PubMed  CAS  Google Scholar 

  78. S. Schuchmann, D. Albrecht, U. Heinemann, and O. von Bohlen und Halbach (2002). Nitric oxide modulates low-Mg2+-induced epileptiform activity in rat hippocampal–entorhinal cortex slices. Neurobiol. Dis. 11, 96–105.

    Article  PubMed  CAS  Google Scholar 

  79. P. Meineke, U. Rauen, H. de Groot, and H.-G. Koth (1999). Cheletropic traps for the fluorescence spetroscopic detection of nitric oxide (nitrogen monoxide) in biological systems. Chem. A Eur. J. 5, 1738–1747.

    Article  CAS  Google Scholar 

  80. P. Meineke, U. Rauen, H. de Groot, H. G. Korth, and R. Sustmann (2000). Nitric oxide detection and visualization in biological systems. Applications of the FNOCT method. Biol. Chem. 381, 575–582.

    Article  PubMed  CAS  Google Scholar 

  81. A. Huisman, A. van de Wiel, T. J. Rabelink, and E. E. van Faassen (2004). Wine polyphenols and ethanol do not significantly scavenge superoxide nor affect endothelial nitric oxide production. J. Nutr. Biochem. 15, 426–432.

    Article  PubMed  CAS  Google Scholar 

  82. A. U. Swintek, S. Christoph, F. Petrat, H. de Groot, and M. Kirsch (2004). Cell type-dependent release of nitric oxide and/or reactive nitrogenoxide species from intracellular SIN-1: Effects on cellular NAD(P)H. Biol. Chem. 385, 639–648.

    Article  PubMed  CAS  Google Scholar 

  83. K. J. Franz, N. Singh, and S. J. Lippard (2000). Metal-based NO sensing by selective ligand. Angew. Chem. Int. Ed. 39, 2120–2122.

    Article  CAS  Google Scholar 

  84. Y. Katayama, N. Soh, and M. Maeda (2001). A new strategy for the design of molecular probes for investigating endogenous nitric oxide using an EPR or fluorescent technique. Chem. Phys. Chem. 2, 655–661.

    CAS  Google Scholar 

  85. Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, and T. Nagano (2004). Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore—Rational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126, 3357–3367.

    Article  PubMed  CAS  Google Scholar 

  86. H. Kojima, K. Sakurai, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, T. Akaike, H. Maeda, and T. Nagano (1997). Development of a fluorescent indicator for the bioimaging of nitric oxide. Biol. Pharm. Bull. 20, 1229–1232.

    PubMed  CAS  Google Scholar 

  87. E. M. Lozinsky, L. V. Martina, A. I. Shames, N. Uzlaner, A. Masarwa, G. I. Likhtenshtein, D. Meyerstein, V. V. Martin, and Z. Priel (2004). Detection of nitric oxide from pig trachea by a fluorescence method. Anal. Biochem. 326, 139–145.

    Article  PubMed  CAS  Google Scholar 

  88. J. Joseph, B. Kalyanaraman, and J. S. Hyde (1993). Trapping of nitric oxide by nitronyl nitroxides: An electron spin resonance investigation. Biochem. Biophys. Res. Commun. 192, 926–934.

    Article  PubMed  CAS  Google Scholar 

  89. Y. Y. Woldman, V. V. Khramtsov, I. A. Grigor'ev, I. A. Kiriljuk, and D. I. Utepbergenov (1994). Spin trapping of nitric oxide by nitronylnitroxides: Measurement of the activity of NO synthase from rat cerebellum. Biochem. Biophys. Res. Commun. 202, 195–203.

    Article  PubMed  CAS  Google Scholar 

  90. E. Lozinsky, V. V. Martin, T. A. Berezina, A. I. Shames, A. L. Weis, and G. I. Likhtenshtein (1999). Dual fluorophore-nitroxide probes for analysis of vitamin C in biological liquids. J. Biochem. Biophys. Methods 38, 29–42.

    Article  PubMed  CAS  Google Scholar 

  91. N. W. Kooy, J. A. Royall, H. Ischiropoulos, and J. S. Beckman (1994). Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16, 149–156.

    Article  PubMed  CAS  Google Scholar 

  92. J. P. Crow (1997). Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: Implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1, 145–157.

    Article  PubMed  CAS  Google Scholar 

  93. D. Jourd'heuil, F. L. Jourd'heuil, P. S. Kutchukian, R. A. Musah, D. A. Wink, and M. B. Grisham (2001). Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo. J. Biol. Chem. 276, 28799–28805.

    Article  PubMed  Google Scholar 

  94. J. Glebska and W. H. Koppenol (2003). Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein and dihydrorhodamine. Free Radic. Biol. Med. 35, 676–682.

    Article  PubMed  CAS  Google Scholar 

  95. Y. Zou, A. R. Kim, J. E. Kim, J. S. Choi, and H. Y. Chung (2002). Peroxynitrite scavenging activity of synaptic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J. Agric. Food Chem. 50, 5884–5890.

    Article  PubMed  CAS  Google Scholar 

  96. F. Bailly, V. Zoete, J. Vamecq, J. P. Catteau, and J. L. Bernier (2000). Antioxidant actions of ovothiol-derived 4-mercaptoimidazoles: Glutathione peroxidase activity and protection against peroxynitrite-induced damage. FEBS Lett. 486, 19–22.

    Article  PubMed  CAS  Google Scholar 

  97. J. S. Choi, H. Y. Chung, S. S. Kang, M. J. Jung, J. W. Kim, J. K. No, and H. A. Jung (2002). The structure–activity relationship of flavonoids as scavengers of peroxynitrite. Phytother. Res. 16, 232–235.

    Article  PubMed  CAS  Google Scholar 

  98. M. Wrona, K. Patel, and P. Wardman (2005). Reactivity of 2′,7′-dichloro-dihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic. Biol. Med. 38, 262–270.

    Article  PubMed  CAS  Google Scholar 

  99. J. A. Royall and H. Ischiropoulos (1993). Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348–355.

    Article  PubMed  CAS  Google Scholar 

  100. L. M. Henderson and J. B. Chappell (1993). Dihydrorhodamine 123: A fluorescent probe for superoxide generation? Eur. J. Biochem. 217, 973–980.

    Article  PubMed  CAS  Google Scholar 

  101. S. L. Hempel, G. R. Buettner, Y. Q. O'Malley, D. A. Wessels, and D. M. Flaherty (1999). Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med. 27, 146–159.

    Article  PubMed  CAS  Google Scholar 

  102. A. S. Keston and R. Brandt (1965). The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11, 1–5.

    Article  PubMed  CAS  Google Scholar 

  103. N. W. Kooy, J. A. Royall, and H. Ischiropoulos (1997). Oxidation of 2′,7′-dichlorofluorescin by peroxynitrite. Free Radic. Res. 27, 245–254.

    PubMed  CAS  Google Scholar 

  104. H. Wang and J. A. Joseph (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612–616.

    Article  PubMed  CAS  Google Scholar 

  105. K. M. Rao, J. Padmanabhan, D. L. Kilby, H. J. Cohen, M. S. Currie, and J. B. Weinberg (1992). Flow cytometric analysis of nitric oxide production in human neutrophils using dichlorofluorescein diacetate in the presence of a calmodulin inhibitor. J. Leukoc. Biol. 51, 496–500.

    PubMed  CAS  Google Scholar 

  106. P. G. Gunasekar, A. G. Kanthasamy, J. L. Borowitz, and G. E. Isom (1995). Monitoring intracellular nitric oxide formation by dichlorofluorescin in neuronal cells. J. Neurosci. Methods 61, 15–21.

    Article  PubMed  CAS  Google Scholar 

  107. H. Possel, H. Noack, W. Augustin, G. Keilhoff, and G. Wolf (1997). 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett. 416, 175–178.

    Article  PubMed  CAS  Google Scholar 

  108. O. Myhre, J. M. Andersen, H. Aarnes, and F. Fonnum (2003). Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem. Pharmacol. 65, 1575–1582.

    Article  PubMed  CAS  Google Scholar 

  109. D. A. Bass, J. W. Parce, L. R. Dechatelet, P. Szejda, M. C. Seeds, and M. Thomas (1983). Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation. J. Immunol. 130, 1910–1917.

    PubMed  CAS  Google Scholar 

  110. X.-F. Yang, X.-Q. Guo, and Y.-B. Zhao (2002). Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta 57, 883–890.

    CAS  PubMed  Google Scholar 

  111. R. Radi, G. Peluffo, M. N. Alvarez, M. Naviliat, and A. Cayota (2001). Unraveling peroxynitrite formation in biological systems. Free Radic. Biol. Med. 30, 463–488.

    Article  PubMed  CAS  Google Scholar 

  112. K. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, and T. Nagano (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170–3175.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors greatly acknowledge FCT and FEDER financial support for the project POCTI/QUI/59284/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduarda Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, A., Fernandes, E. & Lima, J.L.F.C. Use of Fluorescence Probes for Detection of Reactive Nitrogen Species: A Review. J Fluoresc 16, 119–139 (2006). https://doi.org/10.1007/s10895-005-0030-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0030-3

KEY WORDS:

Navigation