Skip to main content
Log in

Synthesis, Characterization, Antioxidant Activity and DNA-Binding Studies of Three Rare Earth (III) Complexes with 1-(4-Aminoantipyrine)-3-tosylurea Ligand

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

1-(4-Aminoantipyrine)-3-tosylurea (H2L) and its three lanthanide (III) complexes, M(H2L)3 3NO3 [where M = Nd(III), Sm(III) and Eu(III)], have been synthesized and characterized. In addition, the DNA-binding properties of the three complexes have been investigated by UV–vis (ultraviolet and visible) absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, cyclic voltammetry, and viscosity measurements. Results suggest that the three complexes bind to DNA via a groove binding mode. Furthermore, the antioxidant activity (superoxide and hydroxyl radical) of the metal complexes was determined by using spectrophotometer methods in vitro. These complexes were found to possess potent antioxidant activity and be better than standard antioxidants like vitamin C and mannitol.

Absorption spectra of the complex 3 inTris-HCl buffer upon addition of calf-thymus DNA. [complex]=1×10-5 M, [DNA]=(0-1) ×10-5 M. Arrow shows the absorbance changing upon increasing DNA concentrations. Inset: plots of [DNA]/(εa – εf) versus [DNA] for the titration of DNA with the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown GR, Foubister AJ (1984) Receptor binding sites of hypoglycemic sulfonylureas and related [(acylamino)alkyl]benzoic acids. J Med Chem 27:79–81

    Article  PubMed  CAS  Google Scholar 

  2. Rufer C, Biere H, Ahrens H, Loge O, Schroder E (1974) Blood glucose lowering sulfonamides with asymmetric carbon atoms. 1. J Med Chem 17:708–715

    Article  PubMed  CAS  Google Scholar 

  3. Howbert JJ, Grossman CS, Crowell TA (1990) Novel agents effective against solid tumors: the diarylsulfonylureas. Synthesis, activities, and analysis of quantitative structure–activity relationships. J Med Chem 33:2393–2407

    Article  PubMed  CAS  Google Scholar 

  4. Xu H, Liang Y, Zhang P, Pu F, Zhou BR, Wu J, Liu JH, Liu ZG, Gao L, Ji LN (2005) Biophysical studies of a ruthenium(II) polypyridyl complex binding to DNA and RNA prove that nucleic acid structure has significant effects on binding behaviors. J Biol Inorg Chem 10:529–538

    Article  PubMed  CAS  Google Scholar 

  5. Williams DR (1972) Metals, ligands and cancer. Chem Rev 72:203–213

    Article  PubMed  CAS  Google Scholar 

  6. Grindey GB (1990) Current status of cancer drug development: failure or limited success. Cancer Cells 2:163–171

    PubMed  CAS  Google Scholar 

  7. Zhang SC, Zhu YG, Tu C, Wei HY, Yang Z, Lin LP, Ding J, Zhang JF, Guo ZJ (2004) A novel cytotoxic ternary copper(II) complex of 1,10-phenanthroline and L-threonine with DNA nuclease activity. J Inorg Biochem 98:2099–2106

    Article  PubMed  CAS  Google Scholar 

  8. Mohamadi FB, Spees MM, Grindey GB (1992) Sulfonylureas: a new class of cancer chemotherapeutic agents. J Med Chem 35:3012–3016

    Article  PubMed  CAS  Google Scholar 

  9. Eriksson M, Leijon M, Hiort C, Norden B, Gradsland A (1994) Binding of delta- and lambda-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 Studied by NMR. Biochemistry 33:5031–5040

    Article  PubMed  CAS  Google Scholar 

  10. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  11. Martin RB, Richardson FS (1979) Lanthanides as probes for calcium in biological systems. Q Rev Biophys 12:181–209

    PubMed  CAS  Google Scholar 

  12. Laufer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927

    Article  Google Scholar 

  13. Shibasaki M, Sasai H, Arai T (1997) Asymmetric catalysis with heterobimetallic compounds. Angew Chem Int Ed Engl 36:1236–1256

    Article  Google Scholar 

  14. Xi PX, Liu XH, Lu HL, Zeng ZZ (2007) Synthesis, characterization and DNA-binding studies of 1-(pyridin-2-yl)-3-tosylurea and its Nd(III), Eu(III) complexes. Transit Met Chem 32:757–761

    Article  CAS  Google Scholar 

  15. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemisty 32:2573–2584

    Article  CAS  Google Scholar 

  16. Marmur J (1961) A procedure for the isolation of deoxyribonuclei from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  17. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111:3051–3058

    Article  CAS  Google Scholar 

  18. Michael TC, Marisol R, Allen JB (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J Am Chem Soc 111:8901–8911

    Article  Google Scholar 

  19. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8547–8553

    Article  CAS  Google Scholar 

  20. Winterbourn CC (1979) Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals. Biochem J 182:625–628

    PubMed  CAS  Google Scholar 

  21. Winterbourn CC (1981) Hydroxyl radical production in body fluids: roles of metal ions, ascorbate and superoxide. Biochem J 198:125–131

    PubMed  CAS  Google Scholar 

  22. Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  23. Wang Y, Yang ZY, Wang Q, Cai QK, Yu KB (2005) Crystal structure, antitumor activities and DNA-binding properties of the La(III) complex with Phthalazin-1(2H)-one prepared by a novel route. J Organomet Chem 690:4557–4563

    Article  CAS  Google Scholar 

  24. Nakamato K (1978) Infrared and Raman spectra of inorganic and coordination compound, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  25. Barton JK, Danishefsky AT, Goldberg JM (1984) Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA. J Am Chem Soc 106:2172–2176

    Article  CAS  Google Scholar 

  26. Cory M, McKee DD, Kagan J, Henry DW, Miller JA (1985) Design, synthesis, and DNA binding properties of bifunctional intercalators. Comparison of polymethylene and diphenyl ether chains connecting phenanthridine. J Am Chem Soc 107:2528–2536

    Article  CAS  Google Scholar 

  27. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282

    Article  PubMed  CAS  Google Scholar 

  28. Vaidyanathan VG, Nair BU (2003) Photooxidation of DNA by a cobalt (II) tridentate complex. J Inorg Biochem 94:121–126

    Article  PubMed  CAS  Google Scholar 

  29. Krishna AG, Kumar DV, Khan BM, Rawel SK, Ganesh KN (1998) Taxol–DNA interactions: fluorescence and CD studies of DNA groove binding properties of taxol. Biochim Biophys Acta 1381:104–112

    PubMed  CAS  Google Scholar 

  30. Vaidyanathan VG, Nair BU (2000) Interaction of DNA with [Cr(Schiff base)(H2O)2]ClO4. Biochim Biophys Acta 1475:157–162

    Google Scholar 

  31. Wang BD, Yang ZY, Qin DD, Chen ZN (2008) Synthesis, characterization, cytotoxic activity and DNA-binding properties of the Ln(III) complexes with ethylenediiminobi(6-hydroxychromone-3-carbaldehyde) Schiff-base. J Photochem Photobiol A Chem 194:49–58

    Article  CAS  Google Scholar 

  32. Song YM, Wu Q, Yang PJ, Luan NN, Wang LF, Liu YM (2006) DNA binding and cleavage activity of Ni(II) complex with all-trans retinoic acid. J Inorg Biochem 100:1685–1691

    Article  PubMed  CAS  Google Scholar 

  33. Rajendran A, Nair BU (2006) Unprecedented dual binding behaviour of acridine group of dye: a combined experimental and theoretical investigation for the development of anticancer chemotherapeutic agents. Biochim Biophys Acta 1760:1794–1801

    PubMed  CAS  Google Scholar 

  34. Johnston DH, Thorp HH (1995) Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J Am Chem Soc 117:8933–8938

    Article  CAS  Google Scholar 

  35. Indumathy R, Radhika S, Kanthimathi M, Weyhermuller T, Nair BU (2007) Cobalt complexes of terpyridine ligand: crystal structure and photocleavage of DNA. J Inorg Biochem 101:434–443

    Article  PubMed  CAS  Google Scholar 

  36. Mesmaeker AD, Orellana G, Barton JK, Turro NJ (1990) Ligand-dependent interaction of Ruthenium(II) polypyridy complexes with DNA probed by emission spectroscopy. Photochem Photobiol 52:461–472

    Article  Google Scholar 

  37. Lakowicz JR, Jayaweera R, Szmacinski H, Wiczk W (1989) Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra. Photochem Photobiol 10:541–546

    Article  Google Scholar 

  38. Chen R, Liu CS, Zhang H, Guo Y, Bu XH, Yang M (2007) Three new Cu(II) and Cd(II) complexes with 3-(2-pyridyl)pyrazole-based ligand: syntheses, crystal structures, and evaluations for bioactivities. J Inorg Biochem 101:412–421

    Article  PubMed  CAS  Google Scholar 

  39. Selvi PT, Palaniandavar M (2002) Spectral, viscometric and electrochemical studies on mixed ligand cobalt(III) complexes of certain diimine ligands bound to calf thymus DNA. Inorg Chim Acta 337:420–428

    Article  CAS  Google Scholar 

  40. Samuni A, Krisna MC (1997) In: Packer L, Cadenas E (eds) Handbook of synthetic antioxidants (chapter: Antioxidant properties of nitroxides and nitroxide SOD mimics); New York, pp 351–373

  41. Xi PX, Xu ZH, Liu XH, Chen FJ, Huang L, Zeng ZZ (2008) Synthesis, characterization, antioxidant activity, and DNA-binding studies of 1-cyclohexyl-3-tosylurea and its Nd(III), xEu(III) complexes. Chem Pharm Bull 56:541–546

    Article  PubMed  CAS  Google Scholar 

  42. Wang BD, Yang ZY, Crewdson P, Wang DQ (2007) Synthesis, crystal structure and DNA-binding studies of the Ln(III) complex with 6-hydroxychromone-3-carbaldehyde benzoyl hydrazone. J Inorg Biochem 101:1492–1504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation in China (20171019) and Zhide Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-zhi Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, Px., Xu, Zh., Liu, Xh. et al. Synthesis, Characterization, Antioxidant Activity and DNA-Binding Studies of Three Rare Earth (III) Complexes with 1-(4-Aminoantipyrine)-3-tosylurea Ligand. J Fluoresc 19, 63–72 (2009). https://doi.org/10.1007/s10895-008-0381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0381-7

Keywords

Navigation