Skip to main content
Log in

Laser Guiding Through an Axially Nonuniform Collisionless Plasma Channel

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

This paper presents an investigation of laser guiding through an axially nonuniform collisionless plasma channel formed by the ionizing laser prepulse. When a delayed second laser beam is allowed to propagate through such preformed plasma channel, on account of nonuniform intensity distribution of laser beam, ponderomotive force comes into play, which further enhances the plasma channel. Unbalanced diffraction and refraction phenomenon through such an axially nonuniform collisionless plasma channel results in periodic beam width variation with the distance of propagation. Wave equations governing the propagation characteristics of the ionizing pre-pulse and delayed pulse through axially nonuniform collisionless plasma channel have been solved by moment theory approach. Effects of the axial nonuniformity and second delayed pulse intensity on the laser guidance have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Tajima et al., Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  2. D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996)

    Article  ADS  Google Scholar 

  3. M. Tabak et al., Phys. Plasmas. 1, 1626 (1994)

    Article  ADS  Google Scholar 

  4. A.J. Mackinnon et al., Phys. plasmas 6, 2185 (1999)

    Article  ADS  Google Scholar 

  5. P. Sprangle et al., Appl. Phys. Lett. 53, 2146 (1988)

    Article  ADS  Google Scholar 

  6. X.F. Li et al., Phys. Rev. A 39, 5751 (1989)

    Article  ADS  Google Scholar 

  7. J. Kasparian et al., Science 301, 61 (2003)

    Article  ADS  Google Scholar 

  8. H. Pepin et al., Phys. Plasmas 8, 2532 (2001)

    Article  ADS  Google Scholar 

  9. M. Rodriguez et al., Opt. Lett. 27, 772 (2002)

    Article  ADS  Google Scholar 

  10. Z.L. Chen et al., Laser Part. Beams 26, 147 (2008)

    Article  Google Scholar 

  11. S. Neff et al., Laser Part. Beams 24, 71 (2006)

    Article  Google Scholar 

  12. W. Yu et al., Laser Part. Beams 25, 631 (2007)

    Article  Google Scholar 

  13. X.M. Zhao et al., Ultrafast Phenomenon VIII, (Springer, Berlin, 1993) pp. 267.

    Google Scholar 

  14. A. Braun et al., Opt. Lett. 20, 010073 (1995)

    ADS  Google Scholar 

  15. H. Yang et al., Phys. Rev. E 65, 016406 (2001)

    Article  ADS  Google Scholar 

  16. H. Yang et al., Phys. Rev. E 66, 016406 (2002)

    Article  ADS  Google Scholar 

  17. J. Fuchs et al., Phys. Rev. Lett. 80, 1658 (1998)

    Article  ADS  Google Scholar 

  18. M. Borghesi et al., Phys. Rev. Lett. 80, 5137 (1998)

    Article  ADS  Google Scholar 

  19. A. Pukhov et al., Phys. Rev. Lett. 76, 3975 (1996)

    Article  ADS  Google Scholar 

  20. B. La Fontaine et al., Phys. Plasmas 6, 1615 (1999)

    Article  ADS  Google Scholar 

  21. E. Esarey et al., IEEE J. Quantum Electron. 33, 1879 (1997)

    Article  ADS  Google Scholar 

  22. C.G. Durfee et al., Phys. Rev. Lett. 71, 2409 (1993)

    Article  ADS  Google Scholar 

  23. C.G. Durfee et al., Phys. Rev. E 51, 2368 (1995)

    Article  ADS  Google Scholar 

  24. H.M. Milchberg et al., Phys. Plasmas 3, 2149 (1996)

    Article  ADS  Google Scholar 

  25. A.B. Borisov et al., Phys. Rev. Lett. 68, 2309 (1992)

    Article  ADS  Google Scholar 

  26. P. Monot et al., Phys. Rev. Lett. 74, 2953 (1995)

    Article  ADS  Google Scholar 

  27. G. Malka et al., Phys. Rev. Lett. 79, 2053 (1997)

    Article  ADS  Google Scholar 

  28. M. Borghesi et al., Phys. Rev. Lett. 78, 879 (1997)

    Article  ADS  Google Scholar 

  29. R. Wagner et al., Phys. Rev. Lett. 78, 3125 (1997)

    Article  ADS  Google Scholar 

  30. P.E. Young et al., Phys. Rev. Lett. 77, 4556 (1996)

    Article  ADS  Google Scholar 

  31. J.E. Ralph et al., Phys. Rev. Lett. 102, 175003 (2009)

    Article  ADS  Google Scholar 

  32. K. Krushelnick et al., Phys. Rev. Lett. 78, 4047 (1997)

    Article  ADS  Google Scholar 

  33. A. Ting et al., Phys. Plasmas 4, 1889 (1997)

    Article  ADS  Google Scholar 

  34. A. Zigler et al., J. Opt. Soc. Am. B 13, 68 (1996)

    Article  ADS  Google Scholar 

  35. Y. Ehrlich et al., Phys. Rev. Lett. 77, 4186 (1996)

    Article  ADS  Google Scholar 

  36. A. Singh et al., Laser Part. Beams 28, 263 (2010)

    Article  ADS  Google Scholar 

  37. S.A. Akhmanov et al., Sov. Phys. Usp. 10, 609 (1968)

    Article  ADS  Google Scholar 

  38. M.S. Sodha et al., in Progress in Optics, vol. XIII, ed. by E. Wolf (North Holland, Amsterdam, 1976), 13, p. 171

  39. J.F. Lam et al., Opt. Commun. 15, 419 (1975)

    Article  ADS  Google Scholar 

  40. M.S. Sodha et al., J. Phys. D Appl. Phys. 12, 1079 (1979)

    Article  ADS  Google Scholar 

  41. C.S. Liu et al., Phys. Plasmas 1, 3100 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ministry of Human Resources and Development of India for providing financial assistance for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvinder Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Singh, N. Laser Guiding Through an Axially Nonuniform Collisionless Plasma Channel. J Fusion Energ 31, 538–543 (2012). https://doi.org/10.1007/s10894-011-9498-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9498-9

Keywords

Navigation