Skip to main content
Log in

Enhanced self-focusing of q-Gaussian laser beam in underdense plasma under the combined effect of density ramp and axial magnetic field

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this manuscript, we observed the synergistic potential of an exponential plasma density ramp and an axial magnetic field to enhance the self-focusing of q-Gaussian laser beams (q-GLB). Our study includes the derivation of the equation governing the beam width parameter, using the Wentzel-Kramers-Brillouin (WKB) and paraxial ray approximations for a comprehensive analysis. It is found that the forward magnetic field enhances self-focusing, while the reverse magnetic field weakens it in underdense plasma when compared to unmagnetized case. The combination of these optical parameters significantly improves self-focusing, resulting in a narrower beam with higher intensity at the focal spot. This leads to more efficient energy transfer to the plasma. The q-parameter determines the non-Gaussian degree and influences the formation of filaments in the beam. This approach can also mitigate the negative effects of diffraction and dispersion, leading to greater precision and efficiency in laser-plasma interaction. In the realm of laser-plasma interactions, the study’s findings, have direct applications in enhancing the precision and efficiency of high-power q-Gaussian laser systems, offering advancements in laser-driven fusion, plasma heating, and particle acceleration. By shedding light on the non-Gaussian behaviour of the system and the combined influence of the external factors, this research opens up new avenues for innovation and exploration in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. M. Mehrangiz, S. Khoshbinfar, On the evaluation of ignition threshold in proton-carbon hybrid ignitor beam proposal. Contrib. Plasma Phys. 60, 201900061 (2020)

    Article  ADS  Google Scholar 

  2. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43, 30 (2022)

    Article  ADS  Google Scholar 

  3. I. Paul, A. Chatterjee, S. Paul, Effects of nonthermal electrons and ion beams on ion-acoustic double layers in warm ion plasma. Indian J. Phys. 95, 2491 (2021)

    Article  ADS  Google Scholar 

  4. T. Kurz, T. Heinemann, M. Gilljohann, Y. Chang, J. Couperus Cabadağ, A. Debus, O. Kononenko, R. Pausch, S. Schöbel, R. Assmann et al., Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams. Nat. Commun. 12, 2895 (2021)

    Article  ADS  Google Scholar 

  5. A.A. Butt, D. Nazir, V. Sharma, N. Kant, V. Thakur, The effect of density ramp on self-focusing of q-Gaussian laser beam in magnetized plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01483-5

    Article  Google Scholar 

  6. A.A. Butt, N. Kant, V. Thakur, Self-focusing of a q-Gaussian laser beam under the influence of an exponential plasma density ramp in plasma. Phys. Scr. 98, 045621 (2023)

    Article  ADS  Google Scholar 

  7. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant excitation of THz radiations by the interaction of amplitude-modulated laser beams with an anharmonic CNTs in the presence of static DC electric and magnetic fields. Chin. J. Phys. 78, 453 (2022)

    Article  Google Scholar 

  8. S. Kumar, V. Thakur, N. Kant, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98, 085506 (2023)

    Article  ADS  Google Scholar 

  9. V. Thakur, N. Kant, Stronger self-focusing of cosh-Gaussian laser beam under exponential density ramp in plasma with linear absorption. Optik 183, 912 (2019)

    Article  ADS  Google Scholar 

  10. H. Hora, Theory of relativistic self-focusing of laser radiation in plasmas. JOSA. 65, 882 (1975)

    Article  ADS  Google Scholar 

  11. M. Aggarwal, H. Kumar, N. Kant, Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp. Optik 127, 2212 (2016)

    Article  ADS  Google Scholar 

  12. J. Faure, V. Malka, J.R. Marquès, P.G. David, F. Amiranoff, K. TaPhuoc, A. Rousse, Effects of pulse duration on self-focusing of ultra-short lasers in underdense plasmas. Phys. Plasmas 9, 756 (2002)

    Article  ADS  Google Scholar 

  13. L. Ouahid, L. Dalil-Essakali, A. Belafhal, Effect of light absorption and temperature on self-focusing of finite Airy-Gaussian beams in a plasma with relativistic and ponderomotive regime. Opt. Quantum Electron. 50, 216 (2018)

    Article  Google Scholar 

  14. S.D. Patil, M.V. Takale, V.J. Fulari, D.N. Gupta, H. Suk, Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 1 (2013)

    Article  ADS  Google Scholar 

  15. V. Thakur, N. Kant, Resonant second harmonic generation in plasma under exponential density ramp profile. Optik 168, 159 (2018)

    Article  ADS  Google Scholar 

  16. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43, 1 (2022)

    Article  Google Scholar 

  17. Y.L. Klimontovich, V. Silin, To the theory of excitation spectra of macroscopic systems. Dokl. Akad. Nauk SSSR 82, 361 (1952)

    Google Scholar 

  18. D. Bohm, D. Pines, A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. P.K. Shukla, B. Eliasson, Nonlinear aspects of quantum plasma physics. Phys.-Uspekhi. 53, 51 (2010)

    Article  ADS  Google Scholar 

  20. S. Patil, M. Takale, Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma. Phys. Plasmas 20, 072703 (2013)

    Article  ADS  Google Scholar 

  21. D. Anderson, B. Hall, M. Lisak, M. Marklund, Statistical effects in the multistream model for quantum plasmas. Phys. Rev. E 65, 046417 (2002)

    Article  ADS  Google Scholar 

  22. P. Shukla, B. Eliasson, Recent developments in quantum plasma physics. Plasma Phys. Control. Fusion. 52, 124040 (2010)

    Article  ADS  Google Scholar 

  23. P.K. Shukla, A new spin on quantum plasmas. Nat. Phys. 5, 92 (2009)

    Article  Google Scholar 

  24. M. Aggarwal, H. Kumar, R. Mahajan, N.S. Arora, T.S. Gill, others, Relativistic ponderomotive self-focusing of quadruple Gaussian laser beam in cold quantum plasma. Laser Part. Beams 36, 353 (2018)

    Article  ADS  Google Scholar 

  25. A. Bhatia, K. Walia, A. Singh, Influence of self-focused Laguerre-Gaussian laser beam on second harmonic generation in collisionless plasma having density transition. Optik 245, 167747 (2021)

    Article  ADS  Google Scholar 

  26. K. Khandale, P. Takale, S. Patil, T. Urunkar, A. Valkunde, S. Patil, M. Takale, Influence of critical beam power on propagation dynamics of q-Gaussian laser beams in isotropic collisional plasma, in. J. Phys. Conf. Ser. 2426, 012005 (2023)

    Article  Google Scholar 

  27. G. Purohit, A. Raizada, Strong self-focusing of an intense cosh-Gaussian laser beam in magnetized plasma under relativistic effect. J. Opt. 52, 564 (2023)

    Article  Google Scholar 

  28. M.A. Wani, N. Kant, Self-focusing of Hermite-cosh-Gaussian laser beams in plasma under density transition. Adv. Opt. 2014, 5 (2014)

    Article  Google Scholar 

  29. V. Pawar, P. Nikam, S. Kokare, S. Patil, M. Takale, Relativistic self-focusing of finite Airy-Gaussian laser beams in cold quantum plasma. J. Opt. 50, 403 (2021)

    Article  Google Scholar 

  30. V. Thakur, N. Kant, Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49, 113 (2019)

    Article  ADS  Google Scholar 

  31. V. Thakur, S.K. Chakravarti, J.P. Kushwaha, N. Kant, Strong self-focusing of a chirped pulse laser in thermal quantum plasma under density transition. Optik 202, 163727 (2020)

    Article  ADS  Google Scholar 

  32. S. Zare, The effect of chirp parameter on laser propagation in collisional quantum plasma. Results Opt. 9, 100284 (2022)

    Article  Google Scholar 

  33. Y. Inoue, Relativistic effects on non-linear waves in a cold collisionless plasma. J. Plasma Phys. 3, 661 (1969)

    Article  ADS  Google Scholar 

  34. P. Jha, E. Agrawal, Second harmonic generation by propagation of a p-polarized obliquely incident laser beam in underdense plasma. Phys. Plasmas 21, 053107 (2014)

    Article  ADS  Google Scholar 

  35. M. Aggarwal, S. Vij, N. Kant, Wiggler magnetic field assisted second harmonic generation in clusters. Eur. Phys. J. D 69, 1 (2015)

    Article  Google Scholar 

  36. M. Yadav, D.N. Gupta, S.C. Sharma, Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas 27, 093106 (2020)

    Article  Google Scholar 

  37. H. Kumar, M. Aggarwal, Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. JOSA B 35, 1635 (2018)

    Article  ADS  Google Scholar 

  38. M.S. Sodha, A.K. Ghatak, V.K. Tripathi, V self-focusing of laser beams in plasmas and semiconductors, in Progress of Optics, vol. 13, (Elsevier, 1976), p.169

    Google Scholar 

  39. B. Vhanmore, S. Patil, A. Valkunde, T. Urunkar, K. Gavade, M. Takale, D. Gupta, Effect of q-parameter on relativistic self-focusing of q-Gaussian laser beam in plasma. Optik 158, 574 (2018)

    Article  ADS  Google Scholar 

  40. A.A. Butt, V. Sharma, N. Kant, V. Thakur, Combined effect of plasma density ramp and wiggler magnetic field on self-focusing of q-Gaussian laser beam in underdense plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01359-8

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AAB helped in derivation, methodology, analytical modelling, graph plotting, and result discussion; VT done supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, A.A., Thakur, V. Enhanced self-focusing of q-Gaussian laser beam in underdense plasma under the combined effect of density ramp and axial magnetic field. J Opt (2023). https://doi.org/10.1007/s12596-023-01514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01514-1

Keywords

Navigation