Skip to main content
Log in

Rheological Properties of Water- and Ethylene-Glycol-Based Nanofluids with Single-Walled Carbon Nanotubes

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An experimental study has been made of the viscosity and rheology of water- and ethylene-glycol-based nanofluids with single-walled carbon nanotubes, and also of their dependence on temperature. The mass concentration of the nanotubes ranged from 0.05 to 1%. Polyvinyl pyrrolidone and sodium dodecyl benzenesulfate were used as dispersants. The dimensions of the single-walled nanotubes were determined by the method of dynamic light scattering. Preliminary study of the viscosity and rheology of basic fluids has shown that they are Newtonian fluids. However, all the studied fluids turned out to be pseudoplastic non-Newtonian fluids. It has been established that with growth in the concentration of nanotubes in a fluid, its index decreases, and the consistency parameter increases. With increase in the temperature of a nanofluid, its viscosity decreases. The change in the temperature of a nanofluid exerts an influence on its rheology: the consistency parameter of the nanofluid increases, and its index decreases, and this influence increases as the concentration of nanotubes in the nanofluid grows. Ultrasonic treatment of the nanofluid leads to a partial degradation of dispersants in it and to an increase in its viscosity. Measures on restoring the properties of long-stored nanofluids have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ya. Rudyak and A. V. Minakov, Modern Problems of Micro- and Nanofluidics [in Russian], Nauka, Novosibirsk (2016).

    Google Scholar 

  2. V. Ya. Rudyak and A. V. Minakov, Thermophysical properties of nanofluids, Eur. Phys. J. E, 41, 15–27 (2018).

    Article  Google Scholar 

  3. V. Ya. Rudyak, Thermophysical characteristics of nanofluids and transport process mechanisms, J. Nanofluids, 8, 1–16 (2019).

    Article  Google Scholar 

  4. D. S. Bethune, C. H. Klang, M. S. de Vries, et al., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363, 605–612 (1993).

    Article  Google Scholar 

  5. C. Journet, W. K. Maser, P. Bernier, et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, 388, 756–761 (1997).

    Article  Google Scholar 

  6. M. G. Hahm, D. P. Hashim, R. Vajtai, and P. M. Ajayan, A review: Controlled synthesis of vertically aligned carbon nanotubes, Carbon Lett., 12, 185 (2011).

    Article  Google Scholar 

  7. P. M. Ajayan, Bulk metal and ceramics nanocomposites, in: Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH & Co. (2004), pp. 1–27.

  8. V. S. Zarubin, I. Yu. Savel’eva, and E. S. Sergeeva, Estimates of equivalent heat conductivity coefficients of carbon nanotubes, J. Eng. Phys. Thermophys., 91, No. 5, 1274–1281 (2018).

    Article  Google Scholar 

  9. B. I. Yakobson, C. J. Brabec, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young′s modulus observed for individual carbon NT, Nature, 381, 678–681 (1996).

    Article  Google Scholar 

  10. K. Saeed and K. Ibrahim, Carbon nanotubes –– properties and applications: A review, Carbon Lett., 14, No. 3, 131–144 (2013).

    Article  Google Scholar 

  11. Yu. A. Baimova and R. R. Mulyukov, Graphene, Nanotubes, and Other Carbon Nanostructures [in Russian], RAN, Moscow (2018).

    Google Scholar 

  12. S. A. Zhdanok, E. N. Polonina, S. N. Leonovich, B. M. Khrustalev, and E. A. Koleda, Influence of nanostructuredcarbon-based plasticizing admixture in a self-compacting concrete mix on its technological properties, J. Eng. Phys. Thermophys., 92, No. 2, 376–382 (2019).

    Article  Google Scholar 

  13. Y. Ding, H. Alias, D. Wen, and R. A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transf., 49, Nos. 1–2, 240–250 (2005).

    Google Scholar 

  14. S. Halelfadl, P. Estellé, B. Aladag, N. Doner, and T. Maré, Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature, Int. J. Therm. Sci., 71, 111–117 (2013).

    Article  Google Scholar 

  15. Y. Yang, E. A. Grulke, Z. G. Zhanh, and G. Wu, Thermal and rheological properties of carbon nanotube-in-oil dispersions, J. Appl. Phys., 99, Article 114307 (2006).

    Article  Google Scholar 

  16. O. Ben-David, E. Nativ-Roth, R. Yerushalmi-Rozen, and M. Gottlieb, Rheological investigation of single-walled carbon nanotubes –– Induced structural ordering in CTAB solutions, Soft Matter, 5, No. 9, 1925–1931 (2009).

  17. J. Ponmozhi, F. A. M. M. Gonçalves, A. G. M. Feirrera, I. M. A. Fonseca, S. Kanagaraj, M. Martins, and M. S. A. Oliveira, Thermodynamic and transport properties of CNT water based nanofluids, J. Nanopart. Res., 11, 101–106 (2010).

    Article  Google Scholar 

  18. T. X. Phuoc, M. Massoudi, and R. H. Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, Int. J. Therm. Sci., 50, 12–18 (2011).

    Article  Google Scholar 

  19. B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret, and P. Estellé, Experimental investigations of the viscosity of nanofluids at low temperatures, Appl. Energy, 97, 876–880 (2012).

    Article  Google Scholar 

  20. P. Estellé, S. Halelfadl, N. Doner, and T. Maré, Shear flow history effect on the viscosity of carbon nanotubes waterbased nanofluid, Curr. Nanosci., 9, No. 2, 225–230 (2013).

    Article  Google Scholar 

  21. R. Sadri, G. Ahmadi, H. Togun, M. Dahari, S. N. Kazi, E. Sadeghinezhad, and N. Zubir, An experimental study of thermal conductivity and viscosity of nanofluids containing carbon nanotubes, Nanoscale Res. Lett., 9, 151–164 (2014).

    Article  Google Scholar 

  22. P. Estellé, S. Halelfadl, and T. Maré, Lignin as dispersant for water-based carbon nanotube nanofluids: Impact on viscosity and thermal conductivity, Int. Commun. Heat. Mass. Transf., 57, 8–12 (2014).

    Article  Google Scholar 

  23. M. Shanbedi, Z. S. Heris, and A. Maskooki, Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants, J. Therm. Anal. Calorim., 120, 1193–2011 (2015).

    Article  Google Scholar 

  24. P. Estellé, S. Halelfad, and T. Maré, Thermophysical properties and heat transfer performance of carbon nanotubes waterbased nanofluids, J. Therm. Anal. Calorim., 127, No. 3, 2075–2081 (2017).

    Article  Google Scholar 

  25. M. Liu, V. C. Lin, and C. Wang, Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system, Nanoscale Res. Lett., 6, 297–312 (2011).

    Article  Google Scholar 

  26. N. Singh, G. Chang, and S. Kanagaraj, Investigation of thermal conductivity and viscosity of carbon nanotube–ethylene glycol nanofluids, Heat. Transf. Eng., 33, 821–827 (2012).

    Article  Google Scholar 

  27. B. Ruan and A. M. Jacobi, Ultrasonic effects on the thermal and rheological properties of carbon nanotubes suspensions, Nanoscale Res. Lett., 7, 1–14 (2012).

    Article  Google Scholar 

  28. A. Indhuja, K. S. Suganthi, Manikandan Sivasubramanian, and K. S. Rajan, Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: Influence of MWCNT concentration and temperature, J. Taiwan Inst. Chem. Eng., 44, No. 3, 474–479 (2013).

  29. R. B. Ganvir, P. V. Walke, and V. M. Kriplani, Heat transfer characteristics in nanofluid: A review, Renew Sustain. Energy. Rev., 75, 451–460 (2017).

    Article  Google Scholar 

  30. A. Cwirzen, K. Habermehl-Cwirzen, and V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Adv. Cem. Res., 20, No. 2, 65–73 (2008).

    Article  Google Scholar 

  31. S. Taketomi and S. Tikadzumi, Magnetic Fluids [Russian translation], Mir, Moscow (1993).

    Google Scholar 

  32. Vaisman L., Wagner H. D., and Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006. Vol. 128–130. Pp. 37–46.

  33. T. Yu and J. E. Herrera, The mechanism of surfactant assisted dispersion of single-walled carbon nanotubes in polyvinylpyrrolidone solutions, Colloid Surface Sci., 2, 96–106 (2017).

    Google Scholar 

  34. E. Goharshadi, Y. Ding, M. Jorabchi, and P. Nancarrow, Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid, Ultrason. Sonochem., 16, No. 1, 120–123 (2009).

    Article  Google Scholar 

  35. R. N. Golykh, V. N. Khmelev, A. V. Shalunov, and S. N. Tsyganok, Ultrasound. Action on Systems with a Carrier Liquid Phase [in Russian], Izd. AlGTU, Barnaul (2018).

    Google Scholar 

  36. T. J. Mason and J. P. Lorimer, Applied Sonochemistry — The Uses of Power Ultrasound in Chemistry and Processing, Wiley VCH, Weinheim (2002).

    Book  Google Scholar 

  37. Y. Li, J. Li, S. Guo, and H. Li, Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanisms in the present of ultrasonic irradiation, Ultrason. Sonochem., 12, 183–189 (2005).

    Article  Google Scholar 

  38. M. T. Taghizadeh and R. Abdollahi, Ultrasonic degradation of polyvinyl pyrrolidone (PVP): Effect of power of ultrasound, temperature and concentration, Am. Chem. Sci. J., 9, No. 3, 1–11 (2015).

    Article  Google Scholar 

  39. A. Grönroos, P. Pentti, and K. Hanna, Ultrasonic degradation of aqueous carboxymethylcellulose: Effect of viscosity, molecular mass and concentration, Ultrason. Sonochem., 15, 644–648 (2008).

    Article  Google Scholar 

  40. N. Nair, W. Kim, R. D. Braatz, and M. S. Strano, Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field, Langmuir, 24, 1790–1795 (2008).

    Article  Google Scholar 

  41. V. Y. Rudyak and A. A. Belkin, On the influence of nanoparticles on the fluid structure, Kolloidn. Zh., 81, No. 4, 541–544 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 5, pp. 1235–1244, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y., Tret’yakov, D.S. Rheological Properties of Water- and Ethylene-Glycol-Based Nanofluids with Single-Walled Carbon Nanotubes. J Eng Phys Thermophy 94, 1208–1216 (2021). https://doi.org/10.1007/s10891-021-02401-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02401-x

Keywords

Navigation