Skip to main content
Log in

Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, thermal conductivity and rheological properties of CNT water-based nanofluids were experimentally measured, whereas density and heat capacity were evaluated from appropriate theoretical correlations. The influence of nanoparticle content and base fluids on thermophysical properties of nanofluids was presented and discussed. Then, the thermal performance and convective heat transfer of such nanofluids were investigated in a coaxial heat exchanger working in co-current flow. Fixed wall temperature boundary condition and laminar regime were also considered during the experiments. The results were presented discussing the effect of the entrance region, Reynolds number and nanofluids composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ϕ :

Concentration (%)

λ :

Thermal conductivity (W m−1 K−1)

h :

Convective heat coefficient (W m−2 K)

C p :

Specific heat (J kg−1 K−1)

ρ :

Density (kg m−3)

Nu :

Nusselt number

Re :

Reynolds number

T :

Temperature (°C)

x :

Axial distance (m)

e :

Thickness (m)

D :

Inner diameter of the tube (m)

m :

Mass flow rate (kg s−1)

W:

Water

EG:

Ethylene glycol

N2:

Nanofluids with water as base fluid

N6:

Nanofluids with EG + water as base fluid

wt:

Weight fraction

bf:

Base fluid

np:

Nanoparticle

nf:

Nanofluid

th:

Thermocouple

a:

Annular tube

s:

Stainless steel

References

  1. Thollander P, Palm J. Improving energy efficiency in industrial energy systems. London: Springer; 2013.

    Book  Google Scholar 

  2. Tao WQ, He YL, Wang QW, Qu ZG, Song FQ. A unified analysis on enhancing single phase convective heat transfer with field synergy principle. Int J Heat Mass Transf. 2002;45:4871–9.

    Article  Google Scholar 

  3. Huminic G, Huminic A. Application of nanofluids in heat exchangers: a review. Renew Sustain Energy Rev. 2012;16:5625–38.

    Article  CAS  Google Scholar 

  4. Halelfadl S, Adham AM, Mohd-Ghazali N, Maré T, Estellé P, Ahmad R. Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid. Appl Therm Eng. 2014;62:492–9.

    Article  CAS  Google Scholar 

  5. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49:240–50.

    Article  CAS  Google Scholar 

  6. Paritosh G, Jorge LA, Marsh C, Carlson TA, Kessler DA. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.

    Article  Google Scholar 

  7. Meyer JP, McKrell TJ, Grote K. The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes. Int J Heat Mass Transf. 2013;58:597–609.

    Article  CAS  Google Scholar 

  8. Wang XQ, Mujumdar AS. A review on nanofluids-part II: experiments and applications. Braz J Chem Eng. 2008;25:631–48.

    Article  Google Scholar 

  9. Karami M, Bahabadi MA, Delfani S, Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Solar Energy Mat Solar Cells. 2014;212:114–8.

    Article  Google Scholar 

  10. Piratheepan M, Anderson TN. An experimental investigation of turbulent forced convection heat transfer by a multi-walled carbon-nanotubes nanofluid. Int Commun Heat Mass Transf. 2014;57:286–90.

    Article  CAS  Google Scholar 

  11. Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Therm Fluid Sci. 2013;44:716–21.

    Article  CAS  Google Scholar 

  12. Hosseinipour E, Heris SZ, Shanbedi M. Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube. J Therm Anal Calorim. 2016;124:205–14.

    Article  CAS  Google Scholar 

  13. Halelfadl S, Estellé P, Maré T. Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime. Exp Therm Fluid Sci. 2014;55:174–80.

    Article  CAS  Google Scholar 

  14. Estellé P, Halelfadl S, Maré T. Lignin as dispersant for water-based carbon nanotube nanofluids: impact on viscosity and thermal conductivity. Int Com Heat Mass Transf. 2014;57:8–12.

    Article  Google Scholar 

  15. Estellé P, Halelfadl S, Maré T. Thermal conductivity of CNT water based nanofluids: experimental trends and models overview. J Therm Eng. 2015;1:381–90.

    Article  Google Scholar 

  16. Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7.

    Article  CAS  Google Scholar 

  17. Shanbedi M, Heris ZS, Maskooki A. Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants. J Therm Anal Calorim. 2015;120:1193–201.

    Article  CAS  Google Scholar 

  18. Halelfadl S, Maré T, Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Therm Fluid Sci. 2014;53:104–10.

    Article  CAS  Google Scholar 

  19. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  20. O’Hanley H, Buangiorno J, McKrell T, Hu LW. Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mech Eng. 2012;4:181079.

    Article  Google Scholar 

  21. Incorpera FP, Bergman TL, Lavine AS, Dewitt DP. Fundamentals of heat and mass transfer. 7th ed. Hoboken: Wiley; 2011.

    Google Scholar 

  22. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  23. Phillip J, Shima PD. Thermal properties of nanofluids. Adv Coll Interface Sci. 2012;183–184:30–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Estellé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estellé, P., Halelfadl, S. & Maré, T. Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids. J Therm Anal Calorim 127, 2075–2081 (2017). https://doi.org/10.1007/s10973-016-5833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5833-8

Keywords

Navigation