Skip to main content
Log in

Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes

A novel correlation for the non-Newtonian nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper examines the rheological behavior of water (60%vol.)–ethylene glycol (40%vol.) mixture in the presence of functionalized multi-walled carbon nanotubes. At the first, the viscosity of various samples was measured at shear rates ranging from 6.115 to 73.38 s−1 and temperature range of 25–50 °C. Then, using the experimental data, some correlations were proposed to predict the viscosity of the nanofluid. Viscosity measurements at different shear rates revealed that all nanofluid samples were non-Newtonian power law fluid. Findings showed that consistency index increased along with volume fraction, while it decreased with increasing temperature. Moreover, the values of power law index were always less than 1, indicating shear thinning behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016;3:1455–62.

    Article  Google Scholar 

  2. Nadooshan AA. An experimental correlation approach for predicting thermal conductivity of water–EG based nanofluids of zinc oxide. Physica E. 2017;87:15–9.

    Article  Google Scholar 

  3. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  4. Hemmat Esfe M, Yan W-M, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.

    Article  CAS  Google Scholar 

  5. Akbari M, Afrand M, Arshi A, Karimipour A. An experimental study on rheological behavior of ethylene glycol based nanofluid: proposing a new correlation as a function of silica concentration and temperature. J Mol Liq. 2017;233:352–7.

    Article  CAS  Google Scholar 

  6. Abedini E, Zarei T, Rajabnia H, Kalbasi R, Afrand M. Numerical investigation of vapor volume fraction in subcooled flow boiling of a nanofluid. J Mol Liq. 2017;238:281–9.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Abbasian Arani AA, Yan W-M, Ehteram H, Aghaie A, Afrand M. Natural convection in a trapezoidal enclosure filled with carbon nanotube–EG–water nanofluid. Int J Heat Mass Transf. 2016;92:76–82.

    Article  CAS  Google Scholar 

  8. Sepyani K, Afrand M, Hemmat Esfe M. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J Mol Liq. 2017;236:198–204.

    Article  CAS  Google Scholar 

  9. Teimouri H, Sheikhzadeh GA, Afrand M, Fakhari MM. Mixed convection in a rotating eccentric annulus containing nanofluid using bi-orthogonal grid types: a finite volume simulation. J Mol Liq. 2017;227:114–26.

    Article  CAS  Google Scholar 

  10. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83.

    Article  CAS  Google Scholar 

  11. Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.

    Article  CAS  Google Scholar 

  12. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49:240–50.

    Article  CAS  Google Scholar 

  13. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50:2272–81.

    Article  CAS  Google Scholar 

  14. Lee J-H, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51:2651–6.

    Article  CAS  Google Scholar 

  15. Lee SW, Park SD, Kang S, Bang IC, Kim JH. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf. 2011;54:433–8.

    Article  CAS  Google Scholar 

  16. Baratpour M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass Transf. 2016;74:108–13.

    Article  CAS  Google Scholar 

  17. Hemmat Esfe M, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci. 2014;55:1–5.

    Article  CAS  Google Scholar 

  18. Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys. 2007;9:367.

    Article  Google Scholar 

  19. Xie H, Yu W, Chen W. MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J Exp Nanosci. 2010;5:463–72.

    Article  CAS  Google Scholar 

  20. Yiamsawas T, Mahian O, Dalkilic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5.

    Article  CAS  Google Scholar 

  21. Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Therm Fluid Sci. 2017;81:420–9.

    Article  CAS  Google Scholar 

  22. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci. 2007;32:397–402.

    Article  CAS  Google Scholar 

  23. Ettefaghi E-O, Rashidi A, Ahmadi H, Mohtasebi SS, Pourkhalil M. Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int Commun Heat Mass Transf. 2013;48:178–82.

    Article  CAS  Google Scholar 

  24. Asadi M, Asadi A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Transf. 2016;76:41–5.

    Article  CAS  Google Scholar 

  25. Afrand M, Nazari Najafabadi K, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2–MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  CAS  Google Scholar 

  26. Hemmat Esfe M, Afrand M, Yan W-M, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.

    Article  CAS  Google Scholar 

  27. Dardan E, Afrand M, Meghdadi Isfahani AH. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109(PArt A):524–34.

    Article  CAS  Google Scholar 

  28. Asadi A, Asadi M, Rezaei M, Siahmargoi M, Asadi F. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: an experimental study. Int Commun Heat Mass Transf. 2016;78:48–53.

    Article  CAS  Google Scholar 

  29. Cabaleiro D, Pastoriza-Gallego MJ, Gracia-Fernández C, Piñeiro MM, Lugo L. Rheological and volumetric properties of TiO2–ethylene glycol nanofluids. Nanoscale Res Lett. 2013;8:286.

    Article  Google Scholar 

  30. Pötschke P, Fornes T, Paul D. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer. 2002;43:3247–55.

    Article  Google Scholar 

  31. Phuoc TX, Massoudi M, Chen R-H. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci. 2011;50:12–8.

    Article  CAS  Google Scholar 

  32. Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy. 2012;97:876–80.

    Article  CAS  Google Scholar 

  33. Tamjid E, Guenther BH. Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol. Powder Technol. 2010;197:49–53.

    Article  CAS  Google Scholar 

  34. Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P. Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J. 2013;231:365–72.

    Article  CAS  Google Scholar 

  35. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Thermal Fluid Sci. 2016;76:221–7.

    Article  CAS  Google Scholar 

  36. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.

    Article  CAS  Google Scholar 

  37. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Therm Fluid Sci. 2016;79:231–7.

    Article  CAS  Google Scholar 

  38. Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl Therm Eng. 2016;105:716–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Afrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavani, E., Afrand, M. & Kalbasi, R. Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes. J Therm Anal Calorim 131, 1177–1185 (2018). https://doi.org/10.1007/s10973-017-6711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6711-8

Keywords

Navigation