Skip to main content
Log in

Thermal properties of semiconductor zinc oxide nanostructures

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A combination of two methods — laser modulation and 3ω — has been used to determine the heat capacity, heat conductivity, and heat diffusivity of zinc oxide nanostructures. A significant difference between the thermal parameters of zinc oxide nanostructures grown by different technological methods has been revealed. It has been shown that the relatively low heat conductivity and heat diffusivity values of oxide zinc nanostructures are due to both the internal defects and the contact resistance between the film and its base — the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. D. Bai, P. X. Gao, Z. L. Wang, and W. G. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett., 82, No. 26, 4806–4808 (2003).

    Article  Google Scholar 

  2. H. Ohno, Making nonmagnetic semiconductors ferromagnetics, Science, 281, 951–956 (1998).

    Article  Google Scholar 

  3. W. L. Hughes and Z. L. Wang, Nanobelts as nanocantilevers, Appl. Phys. Lett., 82, No. 17, 2886–2888 (2003).

    Article  Google Scholar 

  4. K. Sato and H. Katayama-Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors, Jpn. J. Appl. Phys., Pt. 2, 39, L555–L558 (2000).

    Article  Google Scholar 

  5. K. Sato and H. Katayama-Yoshida, Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Nidoped ZnO, Jpn. J. Appl. Phys., Pt. 2, 40, L334–L336 (2001).

    Article  Google Scholar 

  6. S. M. Lee and D. G. Cahill, Heat transport in thin dielectric films, J. Appl. Phys., 81, No. 6, 2590–2596 (1997).

    Article  Google Scholar 

  7. J. Ambarish, T. Kukami, and Min Zhou, Size-dependent thermal conductivity of zinc oxide nanobelts, Appl. Phys. Lett., 88, 141921(1)–141921(3) (2003).

    Google Scholar 

  8. P. Sullivan and G. Seidel, Steady-state, ac-temperature calorimetry, Phys. Rev., 173, No. 3, 679–685 (1968).

    Article  Google Scholar 

  9. D. Denlinger, E. N. Abarra, Kimberly Allen, P. W. Rooney, and M. T. Messer, Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K, Rev. Sci. Instrum., 65, No. 4, 946–958 (1994).

    Article  Google Scholar 

  10. M. Marinelli, U. Zammit, F. Mercuri, and R. Pizzoferrato, High-resolution simultaneous photothermal measurements of thermal parameters at a phase transition with the photopyroelectric technique, J. Appl. Phys., 72, No. 3, 1096–1100 (1992).

    Article  Google Scholar 

  11. R. Kato, A. Maesono, and R. P. Tye, Thermal conductivity measurement of submicron thick films deposited on substrates by modified ac calorimetry (Ångstrom laser-heating method), Int. J. Thermophys., 22, No. 2, 617–629 (2001).

    Article  Google Scholar 

  12. D. A. Borca-Tasciuc, G. Chen, A. Prieto, T. Sands, M. A. Ryan, and J. P. Fieurial, Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina, Appl. Phys. Lett., 85, No. 24, 6001–6003 (2004).

    Article  Google Scholar 

  13. N. J. Carfield and M. Patel, Spot-welding of fine thermocouple wires for use in ac calorimetry, Rev. Sci. Instrum., 69, No. 5, 2186–2187 (1998).

    Article  Google Scholar 

  14. L. Lu, W. Yi, and D. L. Zhang, 3ω method for specific heat and thermal conductivity measurements, Rev. Sci. Instrum., 72, No. 7, 2996–3001 (2001).

    Article  Google Scholar 

  15. W. P. Risk, C. T. Retther, and S. Raoux, Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method, Appl. Phys. Lett., 94, 101906(1)–101906(3) (2009).

    Article  Google Scholar 

  16. S. Kurbanov, G. Panin, T. W. Kim, and T. W. Kang, Thermo- and photo-annealing of ZnO nanocrystals, Jpn. J. Appl. Phys., Pt. 2, 46, 4172–4174 (2007).

    Article  Google Scholar 

  17. H. Wang, Ch. Xie, and D. Zeng, Controlled growth of ZnO by adding H2O, J. Cryst. Growth, 277, Nos. 1–4, 372–377 (2005).

    Article  Google Scholar 

  18. S. U. Yuldashev, G. N. Panin, T. W. Kang, R. A. Nucretov, and I. V. Khan, Electrical and optical properties of ZnO thin films grown on Si substrates, J. Appl. Phys., 100, 013704(1)–013704(3) (2006).

    Article  Google Scholar 

  19. T. W. Kang, Sh. Yuldashev, and G. H. Panin, Electrical and optical properties of ZnO thin films and nanostructures, in: A. A. Balandin and K. L. Wang (Eds.), Handbook of Semiconductor Nanostructures and Nanodevices, American Scientific Publishers, Los Angeles (2005).

    Google Scholar 

  20. R. Kato, A. Maesono, and R. P. Tye, Thermal diffusivity by modified ac calorimetry using a modulated laser beam energy source, Int. J. Thermophys., 20, No. 3, 977–986 (1999).

    Article  Google Scholar 

  21. T. Borca-Tasciuc, A. R. Kumar, and G. Chen, Data reduction in 3ω method for thin-film thermal conductivity determination, Rev. Sci. Instrum., 72, No. 4, 2139–2147 (2001).

    Article  Google Scholar 

  22. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98, 041301(1)–041301(3) (2005).

    Google Scholar 

  23. Y. S. Li, G. Li, S. X. Wang, H. Gao, and Z. C. Tan, Preparation and characterization of nano-ZnO flakes prepared by reactive ion exchange method, J. Therm. Anal. Calorim., 95, No. 2, 671–674 (2009).

    Article  Google Scholar 

  24. Sh. U. Yuldashev, Kh. T. Igamberdiev, T. W. Kang, V. O. Pelenovich, and A. G. Shashkov, Magnetic phase transition in Zn1−x Mn x O doped by nitrogen, Appl. Phys. Lett., 93, 092503(1)–092503(3) (2008).

    Article  Google Scholar 

  25. Kh. T. Igamberdiev, Sh. U. Yuldashev, T. W. Kang, V. O. Pelenovich, and A. G. Shashkov, Critical behavior of Zn1−x Mn x O doped by nitrogen, J. Appl. Phys., 105, 113920(1)–113920(3) (2009).

    Article  Google Scholar 

  26. Kh. T. Igamberdiev, S. Y. Yuldashev, T. W. Kang, and V. O. Pelenovich, Study of magnetic phase transition in ZnMnO by specific heat capacity measurements, J. Korean Phys. Soc., 55, No. 3, 934–937 (2009).

    Article  Google Scholar 

  27. J. Rupp and R. Dirringer, Enhanced specific-heat-capacity (cp) measurements (150–300 K) of nanometer-sized crystalline materials, Phys. Rev. B, 36, No. 15, 7888–7890 (1987).

    Google Scholar 

  28. V. N. Bogomolov, D. A. Kurdyukov, L. S. Parfen’eva, I. A. Smirnov, Kh. Misiorekb, and A. Ezhovskii, Thermal conductivity of the opal+epoxy resin nanocomposite at low temperatures, Fiz. Tverd. Tela, 47, No. 4, 742–744 (2005).

    Google Scholar 

  29. E. T. Swast, Thermal boundary resistance, Rev. Mod. Phys., 61, No. 3, 605–668 (1989).

    Article  Google Scholar 

  30. L. Nosova, V. Sokolov, Sh. Yuldashev, A. G. Shashkov, and P. K. Khabibullaev, Thermal conductivity features of nanostructured CdS/Al2O3 composites, Phys. Status Solidi C, 4, No. 6, 1893–1897 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. T. Igamberdiev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 4, pp. 809–813, July–August, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igamberdiev, K.T., Yuldashev, S.U., Kurbanov, S.S. et al. Thermal properties of semiconductor zinc oxide nanostructures. J Eng Phys Thermophy 83, 863–868 (2010). https://doi.org/10.1007/s10891-010-0407-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0407-2

Keywords

Navigation