Skip to main content
Log in

Gypsy Moth Caterpillar Feeding has Only a Marginal Impact on Phenolic Compounds in Old-Growth Black Poplar

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Species of the Salicaceae produce phenolic compounds that may function as anti-herbivore defenses. Levels of these compounds have been reported to increase upon herbivory, but only rarely have these changes in phenolics been studied under natural conditions. We profiled the phenolics of old-growth black poplar (Populus nigra L.) and studied the response to gypsy moth (Lymantria dispar L.) herbivory in two separate field experiments. In a first experiment, foliar phenolics of 20 trees were monitored over 4 weeks after caterpillar infestation, and in a second experiment the bark and foliar phenolics of a single tree were measured over a week. Of the major groups of phenolics, salicinoids (phenolic glycosides) showed no short term response to caterpillar feeding, but after 4 weeks they declined up to 40 % in herbivore damaged and adjacent undamaged leaves on the same branch when compared to leaves of control branches. Flavonol glycosides, low molecular weight flavan-3-ols, and condensed tannins were not affected by herbivory in the first experiment. However, in the single-tree experiment, foliar condensed tannins increased by 10–20 % after herbivory, and low molecular weight flavan-3-ols decreased by 10 % in the leaves but increased by 10 % in the bark. Despite 15 % experimental leaf area loss followed by a 5-fold increase in foliar jasmonate defense hormones, we found no evidence for substantial induction of phenolic defense compounds in old growth black poplar trees growing in a native stand. Thus, if phenolics in these trees function as defenses against herbivory, our results suggest that they act mainly as constitutive defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552

    Article  CAS  Google Scholar 

  • Ayres MP, Clausen TP, Maclean SF, Redman AM, Reichardt PB (1997) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712

    Article  Google Scholar 

  • Barbehenn R, Dukatz C, Holt C, Reese A, Martiskainen O, Salminen JP, Yip L, Tran L, Constabel CP (2010) Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia 164:993–1004

    Article  PubMed  Google Scholar 

  • Barbehenn R, Weir Q, Salminen JP (2008) Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. J Chem Ecol 34:748–756. doi:10.1007/s10886-008-9478-3

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV, Constabel CP (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565. doi:10.1016/j.phytochem.2011.01.040

    Article  PubMed  CAS  Google Scholar 

  • Bingaman BR, Hart ER (1993) Clonal and leaf age variation in Populus phenolic glycosides: Implications for host selection by Chrysomela scripta (Coleoptera: Chrysomelidae). Environ Entomol 22:397–403

    CAS  Google Scholar 

  • Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Bourjot M, Leyssen P, Eydoux C, Guillemot JC, Canard B, Rasoanaivo P, Gueritte F, Litaudon M (2012) Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi. J Nat Prod 75:752–758

    Article  PubMed  CAS  Google Scholar 

  • Bryant JP, Kuropat PJ (1980) Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu Rev Ecol Syst 11:261–285

    Article  CAS  Google Scholar 

  • Clausen TP, Reichardt PB, Bryant JP, Werner RA, Post K, Frisby K (1989) Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J Chem Ecol 15:2335–2346

    Article  CAS  Google Scholar 

  • Constabel CP, Lindroth R (2010) The impact of genomics on advances in herbivore defense and secondary metabolism in Populus. In: Jansson S, Bhalaero R, Groover A, (eds.). Genetics and genomics of Populus. Springer Verlag, pp 279–305

  • Crawley MJ (2007) The R Book. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  • Donaldson JR, Stevens MT, Barnhill HR, Lindroth RL (2006) Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J Chem Ecol 32:1415–1429

    Article  PubMed  CAS  Google Scholar 

  • Ebert G (1994) Die Schmetterling Baden-Württembergs. Eugen Ulmer GmbH & Co., Stuttgart

    Google Scholar 

  • Ekabo OA, Farnsworth NR, Santisuk T, Reutrakul V (1993) A phytochemical investigation of Homalium ceylanicum. J Nat Prod 56:699–707

    Article  PubMed  CAS  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  PubMed  CAS  Google Scholar 

  • Fields MJ, Orians CM (2006) Specificity of phenolic glycoside induction in willow seedlings (Salix sericea) in response to herbivory. J Chem Ecol 32:2647–2656

    Article  PubMed  CAS  Google Scholar 

  • Förster N, Ulrichs C, Zander M, Katzel R, Mewis I (2010) Factors influencing the variability of antioxidative phenolic glycosides in Salix species. J Agric Food Chem 58:8205–8210

    Article  PubMed  Google Scholar 

  • Haukioja E, Koricheva J (2000) Tolerance to herbivory in woody vs. herbaceous plants. Evol Ecol 14:551–562

    Article  Google Scholar 

  • Heiska S, Tikkanen O-P, Rousi M, Julkunen-Tiitto R (2007) Bark salicylates and condensed tannins reduce vole browsing amongst cultivated dark-leaved willows (Salix myrsinifolia). Chemoecology 17:245–253

    Article  Google Scholar 

  • Hemming JDC, Lindroth RL (1995) Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moth and forest tent caterpillars. Oecologia 103:79–88

    Article  Google Scholar 

  • Hilker M, Meiners T (2010) How do plants “notice” attack by herbivorous arthropods? Biol Rev 85:267–280

    Article  PubMed  Google Scholar 

  • Holeski LM, Vogelzang A, Stanosz G, Lindroth RL (2009) Incidence of Venturia shoot blight in aspen (Populus tremuloides Michx.) varies with tree chemistry and genotype. Biochem Syst Ecol 37:139–145

    Article  CAS  Google Scholar 

  • Hwang SY, Lindroth RL (1997) Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars. Oecologia 111:99–108

    Article  Google Scholar 

  • Julkunen-Tiitto R (1985) Chemotaxonomical screening of phenolic glycosides in northern willow twigs by capillary gas chromatography. J Chromatogr 324:129–139

    Article  CAS  Google Scholar 

  • Julkunen-Tiitto R, Bryant JP, Kuropat P, Roininen H (1995) Slight tissue wounding fails to induce consistent chemical defense in three willow (Salix spp.) clones. Oecologia 101:467–471

    Article  Google Scholar 

  • Kleiner KW, Ellis DD, Mccown BH, Raffa KF (2003) Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin in hybrid poplar against gypsy moth. J Chem Ecol 29:2585–2602

    Article  PubMed  CAS  Google Scholar 

  • Lindroth RL (1991) Biochemical ecology of aspen-Lepidoptera Interactions. J Kans Entomol Soc 64:372–380

    Google Scholar 

  • Lindroth RL, Kinney KK (1998) Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. J Chem Ecol 24:1677–1695

    Article  CAS  Google Scholar 

  • Lindroth RL, Peterson SS (1988) Effects of plant phenols on performance of southern armyworm larvae. Oecologia 75:185–189

    Article  Google Scholar 

  • Mellway RD, Constabel CP (2009) Metabolic engineering and potential functions of proanthocyanidines in poplar. Plant Signal Behav 4:1–3

    Article  Google Scholar 

  • Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 150:924–941

    Article  PubMed  CAS  Google Scholar 

  • Meyer GA, Montgomery ME (1987) Relationships between leaf age and food quality of cottonwood foliage for the gypsy moth, Lymantria dispar. Oecologia 72:527–532

    Article  Google Scholar 

  • Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP (2007) The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant-Microbe Interact 20:816–831

    Article  PubMed  CAS  Google Scholar 

  • Mody K, Linsenmair KE (2004) Plant-attracted ants affect arthropod community structure but not necessarily herbivory. Ecol Entomol 29:217–225

    Article  Google Scholar 

  • Mutikainen P, Walls M, Ovaska J, Keinanen M, Julkunen-Tiitto R, Vapaavuori E (2000) Herbivore resistance in Betula pendula: effect of fertilization, defoliation, and plant genotype. Ecology 81:49–65

    Google Scholar 

  • Osier TL, Lindroth RL (2001) Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J Chem Ecol 27:1289–1313

    Article  PubMed  CAS  Google Scholar 

  • Palo RT (1984) Distribution of birch (Betula SPP.), willow (Salix SPP.) and poplar (Populus SPP.) secondary matabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520

    Article  CAS  Google Scholar 

  • Peters DJ, Constabel CP (2002) Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 32:701–712

    Article  PubMed  CAS  Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230

    Article  CAS  Google Scholar 

  • Roth S, Lindroth RL, Volin JC, Kruger EL (1998) Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Global Change Biol 4:419–430

    Article  Google Scholar 

  • Ruuhola TM, Sipura M, Nousiainen O, Tahvanainen J (2001) Systemic induction of salicylates in Salix myrsinifolia (Salisb.). Ann Bot 88:483–497

    Article  CAS  Google Scholar 

  • Schofield P, Mbugua DM, Pell AN (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40

    Article  CAS  Google Scholar 

  • Scioneaux AN, Schmidt MA, Moore MA, Lindroth RL, Wooley SC, Hagerman AE (2011) Qualitative variation in proanthocyanidin composition of Populus species and hybrids: genetics is the key. J Chem Ecol 37:57–70

    Article  PubMed  CAS  Google Scholar 

  • Spalinger DE, Collins WB, Hanley TA, Cassara NE, Carnahan AM (2010) The impact of tannins on protein, dry matter, and energy digestion in moose (Alces alces). Can J Zool-Rev Can Zool 88:977–987

    Article  CAS  Google Scholar 

  • Stevens MT, Lindroth RL (2005) Induced resistance in the indeterminate growth of aspen (Populus tremuloides). Oecologia 145:298–306

    Article  PubMed  Google Scholar 

  • Thieme H, Benecke R (1971) Die Phenolglykoside der Salicaeen. 8. Mitteilung: Untersuchung über die Glykosidakkumulation in einigen mitteleuropäischen Populus-Arten. Pharmazie 26:227–231

    PubMed  CAS  Google Scholar 

  • Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in arabidopsis. Plant Physiol 159:1159–1175

    Article  PubMed  CAS  Google Scholar 

  • Young B, Wagner D, Doak P, Clausen T (2010) Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining. J Chem Ecol 36:369–377

    Article  PubMed  CAS  Google Scholar 

  • Zangerl AR (2003) Evolution of induced plant responses to herbivores. Basic Appl Ecol 4:91–103

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Rick Lindroth, Bernd Schneider, and Peter Constabel for providing various phenolic standards, Sonja Löffler and Ralf Kätzel for help in establishing the field site, and Beate Rothe, Michael Reichelt, and Antje Zamella for technical assistance in the laboratory. Further, we thank Grit Kunert for advice on the statistical analysis and Peter Constabel for comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybille B. Unsicker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 143 kb)

ESM 2

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boeckler, G.A., Gershenzon, J. & Unsicker, S.B. Gypsy Moth Caterpillar Feeding has Only a Marginal Impact on Phenolic Compounds in Old-Growth Black Poplar. J Chem Ecol 39, 1301–1312 (2013). https://doi.org/10.1007/s10886-013-0350-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0350-8

Keywords

Navigation