Skip to main content
Log in

Oxidizable Phenolic Concentrations Do Not Affect Development and Survival of Paropsis Atomaria Larvae Eating Eucalyptus Foliage

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

A Correction to this article was published on 01 September 2017

This article has been updated

Abstract

Insect folivores can cause extensive damage to plants. However, different plant species, and even individuals within species, can differ in their susceptibility to insect attack. Polyphenols that readily oxidize have recently gained attention as potential defenses against insect folivores. We tested the hypothesis that variation in oxidizable phenolic concentrations in Eucalyptus foliage influences feeding and survival of Paropsis atomaria (Eucalyptus leaf beetle) larvae. First we demonstrated that oxidizable phenolic concentrations vary both within and between Eucalyptus species, ranging from 0 to 61 mg.g−1 DM (0 to 81% of total phenolics), in 175 samples representing 13 Eucalyptus species. Foliage from six individuals from each of ten species of Eucalyptus were then offered to batches of newly hatched P. atomaria larvae, and feeding, instar progression and mortality of the first and second instar larvae were recorded. Although feeding and survival parameters differed dramatically between individual plants, they were not influenced by the oxidizable phenolic concentration of leaves, suggesting that P. atomaria larvae may have effective mechanisms to deal with oxidizable phenolics. Larvae feeding on plants with higher nitrogen (N) concentrations had higher survival rates and reached third instar earlier, but N concentrations did not explain most of the variation in feeding and survival. The cause of variation in eucalypt herbivory by P. atomaria larvae is therefore still unknown, although oxidizable phenolics could potentially defend eucalypt foliage against other insect herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 05 October 2017

    Ian Wallis was inadvertently omitted as an author in this study. Ian Wallis assisted with the collection of the leaf samples that were used in this study, and built the chambers that the insects were housed in.

References

  • Andrew RL, Peakall R, Wallis IR, Wood JT, Knight EJ, Foley WJ (2005) Marker-based quantitatiAlmeidave genetics in the wild?: the heritability and genetic correlation of chemical defenses in Eucalyptus. Genetics 171:1989–1998. doi:10.1534/genetics.105.042952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew RL, Wallis IR, Harwood CE, Henson M, Foley WJ (2007) Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901. doi:10.1007/s00442-007-0784-1

    Article  PubMed  Google Scholar 

  • Appel H (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552

    Article  CAS  PubMed  Google Scholar 

  • Au J, Marsh KJ, Wallis IR, Foley WJ (2013) Whole-body protein turnover reveals the cost of detoxification of secondary metabolites in a vertebrate browser. J Comp Physiol B 183:993–1003. doi:10.1007/s00360-013-0754-3

    Article  PubMed  Google Scholar 

  • Barbehenn RV, Constabel PC (2011) Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565. doi:10.1016/j.phytochem.2011.01.040

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV, Maben RE, Knoester JJ (2008) Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Environ Entomol 37:1113–1118. doi:10.1603/0046-225x(2008)37[1113:Lpoitm]2.0.Co;2

  • Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen JP (2009a) Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar. J Insect Physiol 55:297–304

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen JP (2009b) Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Oecologia 159:777–788

    Article  PubMed  Google Scholar 

  • Barbehenn RV, Niewiadomski J, Pecci C, Salminen J-P (2013) Physiological benefits of feeding in the spring by Lymantria dispar caterpillars on red oak and sugar maple leaves: nutrition versus oxidative stress. Chemoecol 23:59–70. doi:10.1007/s00049-012-0119-5

    Article  CAS  Google Scholar 

  • Bernays EA, Chamberlain D, Mccarthy P (1980) The differential effects of ingested tannic acid on different species of Acridoidea. Entomol Exp Appl 28:158–166

    Article  CAS  Google Scholar 

  • Carne P (1966) Ecological characteristics of the eucalypt-defoliating chrysomelid Paropsis atomaria Ol. Aust J Zool 14:647–672

    Article  Google Scholar 

  • Close DC, Davies NW, Beadle CL (2001) Temporal variation of tannins (galloylglucoses), flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings: implications for light attenuation and antioxidant activities. Aust J Plant Physiol 28:269–278. doi:10.1071/PP00112

    CAS  Google Scholar 

  • Close D, McArthur C, Paterson S, Fitzgerald H, Walsh A, Kincade T (2003) Photoinhibition: a link between effects of the environment on eucalypt leaf chemistry and herbivory. Ecology 84:2952–2966. doi:10.1890/02-0531

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899. doi:10.1126/science.230.4728.895

    Article  CAS  PubMed  Google Scholar 

  • Cooper SM, Owensmith N (1985) Condensed tannins deter feeding by browsing ruminants in a south African savanna. Oecologia 67:142–146. doi:10.1007/Bf00378466

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira HG, Molin-Rugama AJ, Fadini MAM, Rezende D, Soto A, Oliveira C, Pallini A (2010) Induced defense in Eucalyptus trees increases with prolonged herbivory. Revista Colomb de Entomol 36:1–4

    Google Scholar 

  • Fox L, Macauley B (1977) Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia 29:145–162

    Article  PubMed  Google Scholar 

  • Fox LR, Morrow PA (1981) Specialization - species property or local phenomenon. Science 211:887–893. doi:10.1126/science.211.4485.887

    Article  CAS  PubMed  Google Scholar 

  • Gherlenda AN, Haigh AM, Moore BD, Johnson SN, Riegler M (2015) Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia 177:607–617. doi:10.1007/s00442-014-3182-5

    Article  PubMed  Google Scholar 

  • Hagerman AE (2012) Fifty years of polyphenol-protein complexes. Recent Advances in Polyphenol Research 3:71–97

    Article  CAS  Google Scholar 

  • Hagerman AE, Ritchard NT, Jones GA, Riechel TL (1996) Tannins in biological redox reactions. American Institute for Cancer Research annual Research conference. August 31 1995:Washington DC

  • Henery ML, Henson M, Wallis IR, Stone C, Foley WJ (2008a) Predicting crown damage to Eucalyptus grandis by Paropsis atomaria with direct and indirect measures of leaf composition. For Ecol Manag 255:3642–3651. doi:10.1016/j.foreco.2008.03.003

    Article  Google Scholar 

  • Henery ML, Wallis IR, Stone C, Foley WJ (2008b) Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defences on larvae of a specialist herbivore. Oecologia 156:847–859. doi:10.1007/s00442-008-1042-x

    Article  CAS  PubMed  Google Scholar 

  • Henery ML, Stone C, Foley WJ (2009) Differential defoliation of Eucalyptus grandis arises from indiscriminant oviposition and differential larval survival. Agric Forest Entomol 11:107–114. doi:10.1111/j.1461-9563.2008.00423.x

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants - to grow or defend. Q Rev Biol 67:283–335. doi:10.1086/417659

    Article  Google Scholar 

  • Hillis W (1966) Polyphenols in the leaves of Eucalyptus L'Herit: a chemotaxonomic survey - I. Introduction and a study of the series. Globulares Phytochem 5:1075–1090

    Article  CAS  Google Scholar 

  • Larsson S, Ohmart CP (1988) Leaf age and larval performance of the leaf beetle Paropsis atomaria. Ecol Entomol 13:19–24. doi:10.1111/j.1365-2311.1988.tb00329.x

    Article  Google Scholar 

  • Lawler I, Foley WJ, Woodrow IE, Cork S (1997) The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59–68

    Article  Google Scholar 

  • Marsh KJ, Wallis IR, Foley WJ (2003) The effect of inactivating tannins on the intake of Eucalyptus foliage by a specialist Eucalyptus folivore (Pseudocheirus peregrinus) and a generalist herbivore (Trichosurus vulpecula). Aus J Zool 51:31–42

    Article  CAS  Google Scholar 

  • Martin JS, Martin MM, Bernays EA (1987) Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defense. J Chem Ecol 13:605–621

    Article  CAS  PubMed  Google Scholar 

  • Matsuki M, Foley WJ, Floyd RB (2011) Role of volatile and non-volatile plant secondary metabolites in host tree selection by Christmas beetles. J Chem Ecol 37:286–300. doi:10.1007/s10886-011-9916-5

    Article  CAS  PubMed  Google Scholar 

  • McArt S, Spalinger D, Collins W, Schoen E, Stevenson T, Bucho M (2009) Summer dietary nitrogen availability as a potential bottom-up constraint on moose in south-central. Alaska Ecol 90:1400–1411

    Article  Google Scholar 

  • Miles PW, Aspinall D, Correll AT (1982) The performance of two chewing insects on water-stressed food plants in relation to changes in their chemical composition. Aus J Zool 30:347–355. doi:10.1071/Zo9820347

    Article  Google Scholar 

  • Moore BD, Wallis IR, Wood JT, Foley WJ (2004) Foliar nutrition, site quality, and temperature influence foliar chemistry of tallowwood (Eucalyptus microcorys). Ecol Monogr 74:553–568. doi:10.1890/03-4038

    Article  Google Scholar 

  • Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750. doi:10.1111/nph.12526

    Article  PubMed  Google Scholar 

  • Morrow PA, Fox LR (1980) Effects of variation in Eucalyptus essential oil yield on insect growth and grazing damage. Oecologia 45:209–219. doi:10.1007/Bf00346462

    Article  CAS  PubMed  Google Scholar 

  • Murray TJ, Ellsworth DS, Tissue DT, Riegler M (2013) Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Glob Chang Biol 19:1407–1416. doi:10.1111/gcb.12142

    Article  CAS  PubMed  Google Scholar 

  • Nahrung HF, Schutze MK, Clarke AR, Duffy MP, Dunlop EA, Lawson SA (2008) Thermal requirements, field mortality and population phenology modelling of Paropsis atomaria Olivier, an emergent pest in subtropical hardwood plantations. For Ecol Manag 255:3515–3523. doi:10.1016/j.foreco.2008.02.033

    Article  Google Scholar 

  • Nersesian CL, Banks PB, Simpson SJ, McArthur C (2012) Mixing nutrients mitigates the intake constraints of a plant toxin in a generalist herbivore. Behav Ecol 23:879–888. doi:10.1093/beheco/ars049

    Article  Google Scholar 

  • Ohmart CP, Edwards PB (1991) Insect herbivory on Eucalyptus. Annu Rev Entomol 36:637–657. doi:10.1146/annurev.en.36.010191.003225

    Article  Google Scholar 

  • Ohmart CP, Stewart LG, Thomas JR (1985) Effects of food quality, particularly nitrogen concentrations, of Eucalyptus blakelyi foliage on the growth of Paropsis atomaria larvae (Coleoptera: Chrysomelidae). Oecologia 65:543–549. doi:10.1007/Bf00379670

    Article  CAS  PubMed  Google Scholar 

  • Ohmart CP, Thomas JR, Stewart LG (1987) Nitrogen, leaf toughness and the population-dynamics of Paropsis atomaria Olivier (Coleoptera, Chrysomelidae) - a hypothesis. J Aust Entomol Soc 26:203–207

    Article  Google Scholar 

  • Östrand F, Wallis IR, Davies NW, Matsuki M, Steinbauer MJ (2008) Causes and consequences of host expansion by Mnesampela privata. J Chem Ecol 34:153–167. doi:10.1007/s10886-007-9422-y

    Article  PubMed  Google Scholar 

  • Paine TD, Steinbauer MJ, Lawson SA (2011) Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entom 56(56):181–201. doi:10.1146/annurev-ento-120709-144817

    Article  CAS  Google Scholar 

  • Rapley LP, Allen GR, Potts BM, Davies NW (2007) Constitutive or induced defences - how does Eucalyptus globulus defend itself from larval feeding? Chemoecol 17:235–243. doi:10.1007/s00049-007-0382-z

    Article  Google Scholar 

  • Roslin T, Salminen JP (2008) Specialization pays off: contrasting effects of two types of tannins on oak specialist and generalist moth species. Oikos 117:1560–1568

    Article  Google Scholar 

  • Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338

    Article  Google Scholar 

  • Salminen JP, Lempa K (2002) Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecol 12:203–211

    Article  CAS  Google Scholar 

  • Salminen JP, Roslin T, Karonen M, Sinkkonen J, Pihlaja K, Pulkkinen P (2004) Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J Chem Ecol 30:1693–1711

    Article  CAS  PubMed  Google Scholar 

  • Schultz JC, Baldwin IT (1982) Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217:149–150. doi:10.1126/science.217.4555.149

    Article  CAS  PubMed  Google Scholar 

  • Schutze MK, Clarke AR (2008) Converse Bergmann cline in a Eucalyptus herbivore, Paropsis atomaria Olivier (Coleoptera: Chrysomelidae): phenotypic plasticity or local adaptation? Glob Ecol Biogeogr 17:424–431. doi:10.1111/j.1466-8238.2007.00374.x

    Article  Google Scholar 

  • Slansky F, Feeny P (1977) Stabilization of rate of nitrogen accumulation by larvae of cabbage butterfly on wild and cultivated food plants. Ecol Monogr 47:209–228. doi:10.2307/1942617

    Article  Google Scholar 

  • Steinbauer MJ, Farnier K, Taylor GS, Salminen JP (2016) Effects of eucalypt nutritional quality on the bog gum-Victorian metapopulation of Ctenarytaina bipartita and implications for host and range expansion. Ecol Entomol 41:211–225. doi:10.1111/een. 12295

    Article  Google Scholar 

  • Tanton M, Epila J (1984) Parasitization of larvae of Paropsis atomaria Ol (Coleoptera: Chrysomelidae) in the Australian Capital Territory. Aus J Zool 32:251–259

    Article  Google Scholar 

  • Vihakas M, Pälijärvi M, Karonen M, Roininen H, Salminen J-P (2014) Rapid estimation of the oxidative activities of individual phenolics in crude plant extracts. Phytochemistry 103:76–84. doi:10.1016/j.phytochem.2014.02.019

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu R, Gung BW, Tindall S, Gonzalez JM, Halvorson JJ, Hagerman AE (2016) Polyphenol-aluminum complex formation: implications for aluminum tolerance in plants. J Agric Food Chem 64:3025–3033. doi:10.1021/nnjafc.6b00331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Australian Research Council to KJM (DE120101263). We thank Dr. ML Henery for help with culture of P. atomaria and Professor J-P Salminen for advice on the oxidizable phenolic assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen J. Marsh.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10886-017-0893-1.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsh, K.J., Zhou, W., Wigley, H.J. et al. Oxidizable Phenolic Concentrations Do Not Affect Development and Survival of Paropsis Atomaria Larvae Eating Eucalyptus Foliage. J Chem Ecol 43, 411–421 (2017). https://doi.org/10.1007/s10886-017-0835-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0835-y

Keywords

Navigation