Skip to main content
Log in

Synergistic Effects of Amides from Two Piper Species on Generalist and Specialist Herbivores

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants use a diverse mix of defenses against herbivores, including multiple secondary metabolites, which often affect herbivores synergistically. Chemical defenses also can affect natural enemies of herbivores via limiting herbivore populations or by affecting herbivore resistance to parasitoids. In this study, we performed feeding experiments to examine the synergistic effects of imides and amides (hereafter “amides”) from Piper cenocladum and P. imperiale on specialist (Eois nympha, Geometridae) and generalist (Spodoptera frugiperda, Noctuidae) lepidopteran larvae. Each Piper species has three unique amides, and in each experiment, larvae were fed diets containing different concentrations of single amides or combinations of the three. The amides from P. imperiale had negative synergistic effects on generalist survival and specialist pupal mass, but had no effect on specialist survival. Piper cenocladum amides also acted synergistically to increase mortality caused by parasitoids, and the direct negative effects of mixtures on parasitoid resistance and pupal mass were stronger than indirect effects via changes in growth rate and approximate digestibility. Our results are consistent with plant defense theory that predicts different effects of plant chemistry on generalist versus adapted specialist herbivores. The toxicity of Piper amide mixtures to generalist herbivores are standard bottom-up effects, while specialists experienced the top-down mediated effect of mixtures causing reduced parasitoid resistance and associated decreases in pupal mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe, T., and Higashi, M. 1991. Cellulose centered perspective on terrestrial community structure. Oikos 60:127–133.

    Article  Google Scholar 

  • Ayres, M. P., Clausen, T. P., Maclean, S. F., Redman, A. M., and Reichardt, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.

    Article  Google Scholar 

  • Barbosa, P., Saunders, J. A., Kemper, J., Trumbule, R., Olechno, J., and Martinat, P. 1986. Plant Allelochemicals and insect parasitoids effects of nicotine on Cotesia congregata (Say) (Hymenotpera, Braconidae) and Hyposoter annulipes (Cresson) (Hymenotpera, Ichneumonidae). J. Chem. Ecol. 12:1319–1328.

    Article  CAS  Google Scholar 

  • Barbosa, P., Gross, P., and Kemper, J. 1991. Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregata. Ecology 72:1567–1575.

    Article  CAS  Google Scholar 

  • Berenbaum, M., and Neal, J. J. 1985. Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicant. J. Chem. Ecol. 11:1349–1358.

    Article  CAS  Google Scholar 

  • Berenbaum, M., Nitao, J. K., and Zangerl, A. R. 1991. Adaptive significance of furanocoumarin diversity in Pastinaca sativa (Apicaceae). J. Chem. Ecol. 17:207–215.

    Article  CAS  Google Scholar 

  • Bi, J. L., Felton, G. W., Murphy, J. B., Howles, R. A., Dixon, R. A., and Lamb, C. J. 1997. Do plant phenolics confer resistance to specialist and generalist insect hervivores? J. Argic. Food Chem. 45:4500–4504.

    Article  CAS  Google Scholar 

  • Bowers, M. D., and Puttick, G. M. 1989. Iridoid glycosides and insect feeding preferences: gypsy moths (Lymantria dispar, Lamantriidae) and buckeys (Junonia coenia, Nymphalidae). Ecol. Entomol. 14:247–256.

    Article  Google Scholar 

  • Bronstein, J. L. 1994. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9: 214–217.

    Article  Google Scholar 

  • Brower, L. P. 1984. Chemical defense in butterflies, pp. 109–134, in R. I. Vane Wright and P. R. Ackery (eds.). The Biology of Butterflies. Academic Press, London.

    Google Scholar 

  • Bukovinszky, T., Poelman, E. H., Gols, R., Prekatsakis, G., Vet, L. E. M., Harvey, J. A., and Dicke, M. 2009. Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 160:299–308.

    Article  PubMed  Google Scholar 

  • Burger, W. 1971. Flora costaricensis family 40 Casuarinaceae-D family 41 Piperaceae-D. Fieldiana Bot. 35:1–227.

    Google Scholar 

  • Campbell, B. C., and Duffey, S. S. 1981. Alleviation of alpha-tomatine-incuded toxicity to the parasitoid, Hyposotet exiguae, by phytosterols in the diet of the host, Heliothis zea. J. Chem. Ecol. 7:927–946.

    Article  CAS  Google Scholar 

  • Coley, P. D., Lokvam, J., Rudolph, K., Bromberg, K., Sackett, T. E., Wright, L., Brenes-Arguedas, T., Dvorett, D., Ring, S., Clark, A., Baptiste, C., Pennington, R. T., and Kursar, T. A. 2005. Divergent defensive strategies of young leaves in two species of inga. Ecology 86:2633–2643.

    Article  Google Scholar 

  • Connahs, H., Rodríguez-Castañeda, G., Walters, T., Walla, T., and Dyer, L. A. 2009. Geographic variation in host-specificity and parasitoid pressure of an herbivore (Geometridae) associated with the tropical genus Piper (Piperaceae). J. Insect Sci. 9:1–11.

    Article  Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Pare P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  Google Scholar 

  • Dodson, C. D. , Dyer, L. A., Searcy, J., Wright, Z., and Letourneau, D. K. 2000. Cenocladamide, a dihydropyridone alkaloid from Piper cenocladum. Phytochemistry 53:51–54.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, L. A. 1995. Tasty generalists and nasty specialists—Antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:1483–1496.

    Article  Google Scholar 

  • Dyer, L. A., and Gentry, G. L. 2002. Caterpillars and parasitoids of a tropical lowland wet forest. http://www.caterpillars.org.

  • Dyer, L. A., Dodson, C. D., Beihoffer, J., and Letourneau, D. K. 2001. Trade-offs in antiherbivore defenses in Piper cenocladum: Ant mutualists versus plant secondary metabolites. J. Chem. Ecol. 27:581–592.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, L. A., Dodson, C. D., Stireman, J. O. III, Tobler, M. A., Smilanich, A. M., Fincher, R. M., and Letourneau, D. K. 2003. Synergistic effects of three Piper amides on generalist and specialist herbivores. J. Chem. Ecol. 29:2499–2514.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, L. A., Dodson, C. D., and Richards, J. 2004a. Isolation, synthesis, and evolutionary ecology of Piper amides, pp 117–139, in L. A. Dyer and A. N. Palmer (eds.). Piper. A Model Genus for Studies of Evolution, Chemical Ecology, and Trophic Interactions. Kluwer Academic, Boston.

    Google Scholar 

  • Dyer, L. A., Letourneau, D. K., Dodson, C. D., Tobler, M. A., Stireman, J. O., and Hsu, A. 2004b. Ecological causes and consequences of variation in defensive chemistry of a Neotropical shrub. Ecology 85:2795–2803.

    Article  Google Scholar 

  • Fincher, R. M., Dyer, L. A., Dodson, C. D., Richards, J. L., Tobler, M. A., Searcy, J., Mather, J. E., Reid, A. J., Rolig, J. S., and Pidcock, W. 2008. Inter- and Intraspecific comparisons of antiherbivore defenses in three species of rainforest understory shrubs. J. Chem. Ecol. 34:558–574.

    Article  PubMed  CAS  Google Scholar 

  • Gauld, I. D., Gaston, K. J., and Janzen, D. H. 1992. Plant allelochemicals, tritrophic interactions and the anomalous diversity of tropical parasitoids: the “nasty” host hypothesis. Oikos 65:353–357.

    Article  Google Scholar 

  • Gols, R., Bukovinszky, T., Van Dam, N. M., Dicke, M., Bullock, J. M., and Harvey, J. A. 2008. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J. Chem. Ecol. 34:132–143.

    Article  PubMed  CAS  Google Scholar 

  • Gunasena, G. H., Vinson, S. B., and Williams, H. J. 1990. Effects of nicotine on growth, development, and survival of the tobacco budworm (Lepidoptera, Noctuidae) and the parasitoid Campoletis sonorensis (Hymenoptera, Ichneumonidae). J. Econ. Entomol. 83:1777–1782.

    CAS  Google Scholar 

  • Hagele, B. F., and Rowell-Rahier, M. 2000. Choice, performance and heritability of performance of specialist and generalist insect herbivores towards cacalol and seneciphylline, two allelochemicals of Adenostyles alpina (Asteraceae). J. Evol. Biol. 13:131–142.

    Article  CAS  Google Scholar 

  • Harborne, J. B. 1988. Introduction to Ecological Biochemistry. Academic, San Diego, p. 356.

    Google Scholar 

  • Harvey, J. A., Van Dam, N. M., and Gols, R. 2003. Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. J. Anim. Ecol. 72:520–531.

    Article  Google Scholar 

  • Harvey, J. A., Van Nouhuys, S., and Biere, A. 2005. Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids. J. Chem. Ecol. 31:287–302.

    Article  PubMed  CAS  Google Scholar 

  • Haviola, S., Kapari, L., Ossipov, V., Rantala, M. J., Ruuhola, T., and Haukioja, E. 2007. Foliar phenolics are differently associated with Epirrita autumnata growth and immunocompetence. J. Chem. Ecol. 33:1013–1023.

    Article  PubMed  CAS  Google Scholar 

  • Hay, M. E., Kappel, Q. E., and Fenical, W. 1994. Synergisms in plant defenses against herbivores—ineractions of chemistry, calcification, and platy-quality. Ecology 75:1714–1726.

    Article  Google Scholar 

  • Hazarika, U., Sarkar, B. N., Barah, A., and Chakravorty, R. 2007. Association of fecundity with larval and pupal weight in different eco-races of eri silkworm Samia ricini Donovan. J. Adv. Zool. 28:67–70.

    Google Scholar 

  • Heil, M., Delsinne, T., Hilpert, A., Schurkens, S., Andary, C., Linsenmair, K. E., Sousa, M. S., and Mckey, D. 2002. Reduced chemical defence in ant-plants? A critical re- evaluation of a widely accepted hypothesis. Oikos 99:457–468.

    Article  CAS  Google Scholar 

  • Jones, D. G. (ed.). 1998. Piperonyl Butoxide: The Insect Synergist. Academic, London, p. 323.

    Google Scholar 

  • Jones, C. G., and Firn, R. D. 1991. On the evolution of plant secondary chemical diversity. Philos. Trans. R. Soc. B. 333:273–280.

    Article  Google Scholar 

  • Kato, M. J., and Furlan, M.. 2007. Chemistry and evolution of the Piperaceae. Pure and Appl. Chem. 79:529–538.

    Article  CAS  Google Scholar 

  • Kubo, I., and Muroi, H. 1993. Combination effects of antibacterial compounds in green tea flavor against Streptococcus mutans. J. Agric. Food Chem. 41:1102–1105.

    Article  Google Scholar 

  • Lampert, E. C., and Bowers, M. D. 2010. Host plant species affects the quality of the generalist Trichoplusia ni as a host for the polyembryonic parasitoid Copidosoma floridanum. Entomol. Exp. Appl. 134:287–295.

    Article  Google Scholar 

  • Letourneau, D. K., Dyer, L. A., and Vega, G. 2004. Indirect effects of top predator on rain forest undersory plant community. Ecology 85:2144–2152.

    Article  Google Scholar 

  • Mckey, D., Gaume, L., Brouat, C., Di Giusto, B., Pacal, L., Debout, G., Dalecky, A.,and Heil, M.. 2005. The trophic structure of tropical ant–plant–herbivore interactions: community consequences and coevolutionary dynamics, pp. 386–413, in D. F. R. P. Burslem, M. A. Pinard and S. E. Hartley (eds.). Biotic Interactions in the Tropics. Their Role in the Maintenance of Species Diversity. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Nelson, A. C., and Kursar, T. A. 1999. Interactions among plant defense compounds: a method for analysis. Chemoecology 9:81–92.

    Article  CAS  Google Scholar 

  • Ode, P. J. 2006. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51:163–185.

    Article  PubMed  CAS  Google Scholar 

  • Parmar, V. S., Jain, S. C., Bisht, K. S., Jain, R., Taneja, P., Jha, A., Tyagi, O. D., Prasad, A. K., Wengel, J., Olsen, C. E., and Boll, P. M. 1997. Phytochemistry of the genus Piper. Phytochemistry 46:597–673.

    Article  CAS  Google Scholar 

  • Richards, J. L., Myhre, S. M., and Jay, J. I. 2001. Total synthesis of piplartinelartine, 13-desmethylpiplartinelartine, and cenocladamide: Three compounds isolated from Piper cenocladum. Abstr. Pap. Am. Chem. S. 221:522.

    Google Scholar 

  • Romeo, J. T., Saunders, J. A., and Barbosa, P. 1996. Phytochemical Diversity and Redundancy in Ecological Interactions. Plenum, New York.

    Google Scholar 

  • Roslin, T., and Salminen, J.-P. 2008. Specialization pays off: contrasting effects of two types of tannins on oak specialist and generalist moth species. Oikos 117:1560–1568.

    Article  Google Scholar 

  • Scott, I. M., Puniani, E., Durst, T., Phelps, D., Merali, S., Assabgui, R. A., Sánchez-Vindas, P., Poveda, L., Philogéne, B. J. R., and Arnason, J. T. 2002. Insecticidal activity of Piper tuberculatum Jacq. extracts: synergistic interaction of Piperamides. Agric. For. Entomol. 4:137–144.

    Article  Google Scholar 

  • Singer, M. S., and Stireman, J. O. III. 2005. The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol. Lett. 8:1247–1255.

    Article  Google Scholar 

  • Singer, M. S., Mace, K. C., and Bernays, E. A. 2009. Self-medication as adaptive plasticity: increased ingestion of plant toxins by parasitized caterpillars. PLoS ONE 4.

  • Smilanich, A. M., Dyer, L. A., Chambers, J. Q., and Bowers, M. D. 2009. Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol. Lett. 12:612–621.

    Article  PubMed  Google Scholar 

  • Soler, R., Bezemer, T. M., Van Der Putten, W. H., Vet, L. E. M., and Harvey, J. A. 2005. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J. Anim. Ecol. 74:1121–1130.

    Article  Google Scholar 

  • Steppuhn, A., and Baldwin, I. T. 2007. Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol. Lett. 10:499–511.

    Article  PubMed  Google Scholar 

  • Stermitz, F. P., Lorenz, P., Tawara, J. N., Zenewicz, L. A., and Lewis, K. 2000. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin a multidrug pump inhibitor. Proc. Nat. Acad. Sci. USA 97:1433–1437.

    Article  CAS  Google Scholar 

  • Tallarida, R. J. 2000. Drug Synergism and Dose-effect Data Analysis. Chapman & Hall/CRC, Boca Raton.

    Book  Google Scholar 

  • Tammaru, T., Kaitaniemi, P., and Ruohomaki, K. 1996. Realized fecundity in Epirrita autumnata (Lepidoptera: Geometridae): Relation to body size and consequences to population dynamics. Oikos 77:407–416.

    Article  Google Scholar 

  • Thiery, D., and Moreau, J. 2005. Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 143:548–557.

    Article  PubMed  Google Scholar 

  • Turlings, T. C. J., and Wackers, F. 2004. Recruitment of predators and parasitoids by herbivore-injured plants, pp. 21–75, in R. T. Carde and J. G. Millar (eds.). Advances in insect chemical ecology. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Utsumi, S., and Ohgushi, T. 2009. Community-wide impacts of herbivore-induced plant regrowth on arthropods in a multi-willow species system. Oikos 118:1805–1815.

    Article  Google Scholar 

  • Van Dam, N. M., Vuister, L. W. M., Bergshoeff, C., De Vos, H., and Van Der Meijden, E. 1995. The “Raison D’Etre” of Pyrrolizidine Alkaloids in Cynoglossum officinale: Deterrent effects against generalist herbivores. J. Chem. Ecol. 21:507–523.

    Article  Google Scholar 

  • Vet, L. E. M., and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Article  Google Scholar 

  • Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol 5:229–288.

    Article  Google Scholar 

  • Wasano, N., Konno, K., Nakamura, M., Hirayama, C., Hattori, M., and Tateishi, K. 2009. A unique latex protein, MLX56, defends mulberry trees from insects. Phytochemistry 70:880–888.

    Article  PubMed  CAS  Google Scholar 

  • White, T. C. R. 1978. Importance of a relative shortage of food in animal ecology. Oecologia 33:71–86.

    Article  Google Scholar 

  • Zvereva, E. L., and Rank, N. E. 2003. Host plant effects on parasitoid attack on the leaf beetle Chrysomela lapponica. Oecologia 135: 258–267.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by NSF grants DEB-0344250 and CHE-0718732, as well as grants from Earthwatch Institute and the University of Nevada Reno. We thank the owners of El Bejuco and La Tirimbina, the Costa Rica National Parks, and the Organization for Tropical Studies (OTS) for use of their facilities. Excellent technical assistance was provided by Earthwatch volunteers and H. Garcia Lopez. We are grateful to the chemical ecology and tropical entomology laboratory group at Tulane University and Jeff Harvey for insights and assistance that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lora A. Richards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, L.A., Dyer, L.A., Smilanich, A.M. et al. Synergistic Effects of Amides from Two Piper Species on Generalist and Specialist Herbivores. J Chem Ecol 36, 1105–1113 (2010). https://doi.org/10.1007/s10886-010-9852-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9852-9

Key Words

Navigation