Skip to main content
Log in

The Tea Weevil, Myllocerinus aurolineatus, is Attracted to Volatiles Induced by Conspecifics

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The tea weevil, Myllocerinus aurolineatus (Voss) (Coleoptera: Curculionidae), is a leaf-feeding pest of Camellia sinensis (O.Ktze.) with aggregative behaviors that can seriously reduce tea yield and quality. Although herbivore-induced host plant volatiles have been shown to attract conspecific individuals of some beetle pests, especially members of the Chrysomelidae family, little is known about the volatiles emitted from tea plants infested by M. aurolineatus adults and their roles in mediating interactions between conspecifics. The results of behavioral bioassays revealed that volatile compounds emitted from tea plants infested by M. aurolineatus were attractive to conspecific weevils. Volatile analyses showed that infestations dramatically increased the emission of volatiles, (Z)-3-hexenal, (Z)-3-hexenol, (E)-β-ocimene, linalool, phenylethyl alcohol, benzyl nitrile, indole, (E, E)-α-farnesene, (E)-nerolidol, and 31 other compounds. Among the induced volatiles, 12 chemicals, including γ-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, (Z)-3-hexenal, and (E, E)-α-farnesene, elicited antennal responses from both sexes of the herbivore, whereas (E)-β-ocimene elicited antennal responses only from males. Using a Y-tube olfactometer, we found that six of the 13 chemicals, γ-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, and (Z)-3-hexenal, were attractive to both males and females; two chemicals, (E/Z)-β-ocimene and (E, E)-α-farnesene, were attractive only to males; and four chemicals, (E)-4,8-dimethyl-1,3,7-nonatriene, phenylethyl alcohol, linalool, and (Z)-3-hexenol, were attractive only to females. The findings provide new insights into the interactions between tea plants and their herbivores, and may help scientists develop new strategies for controlling the herbivore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bolter, C. J., Dicke, M., Van-loon, J. J. J., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.

    Article  CAS  Google Scholar 

  • Campbell, C. A. M., Pettersson, J., Pickett, J. A.,Wadhams, L. J., and Woodcock, C. M. 1993. Spring migration of Damson-Hop aphid, Phorodon humuli (Homoptera: Aphididae), and summer host plant-derived semiochemicals released on feeding. J. Chem. Ecol. 19:1569–1576.

    Article  CAS  Google Scholar 

  • Carroll, M. J., Schmelz, E. A., Meagher, R. L., and Teal, P. E. A. 2006. Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize samplings. J. Chem. Ecol. 32:1911–1924.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, M. J., Schmelz, E. A., and Teal, P. E. A. 2008. The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin. J. Chem. Ecol. 3:291–300.

    Article  Google Scholar 

  • Delphia, C. M., Mescher, M. C., and De Moraes, C. M. 2007. Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J. Chem. Ecol. 33:997–1012.

    Article  CAS  PubMed  Google Scholar 

  • Dicke, M., and Vet, L. E. M. 1999. Plant-carnivore interactions: evolutionary and ecological consequences for plant, herbivore, and carnivore, pp. 483–520 in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores: Between Plants and Predators. Blackwell Science, Oxford, UK.

    Google Scholar 

  • Dickens, J. C. 2000. Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Agric. For. Entomol. 2:167–172.

    Article  Google Scholar 

  • Erbilgin, N., Krokene, P., Kvamme, T., and Christiansen, E. 2007. A host monoterpene influences Ips typographus (Coleoptera: Curculionidae, Scolytinae) responses to its aggregation pheromone. Agri. For. Entom. 9:135–140.

    Article  Google Scholar 

  • Faccoli, M., Anfora, G., and Tasin, M. 2008. Responses of the Mediterranean pine shoot beetle Tomicus destruens (Wollaston) to pine shoot and bark volatiles. J. Chem. Ecol. 34:1163–1169.

    Article  Google Scholar 

  • Han, B., and Chen, Z. M. 2002. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J. Chem. Ecol. 28:2203–2219.

    Article  CAS  PubMed  Google Scholar 

  • Jhumur, U. S., Dotterl, S., and Jurgens, A. 2007. Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod-Plant Interact. 1:245–254.

    Article  Google Scholar 

  • Kalberer, N. M., Turlings, T. C. J., and Rahier, M. 2001. Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. J. Chem. Ecol. 27: 647–661.

    Article  CAS  PubMed  Google Scholar 

  • Landolt, P. J., and Guédot, C. 2008. Field attraction of codling moths (Lepidoptera: Tortricidae) to apple and pear fruit, and quantitation of kairomones from attractive fruit. Ann. Entomol. Soc. Am. 3:675–681.

    Article  Google Scholar 

  • Lieutier, F. 2002. Mechanisms of resistance in conifers and bark beetle attack strategies, pp. 31–77 in M. R. Wagner, K. M. Clancy, F. Lieutier, and T. D. Paine (eds.), Mechanisms and Deployment of Resistance in Trees to Insects, Kluwer Academic, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Loughrin, J. H., Potter, D. A., Hamitonkemp, T. R., and Byers, M. E. 1996. Role of feeding-induced plant volatiles in aggregative behavior of the Japanese beetle (Coleoptera, Scarabaeidae). Environ. Entomol. 25:1111–1191.

    Google Scholar 

  • Ndiege, I. O., Budenberg, W. J., Otieno D. O., and Hassanali, A. 1996. 1,8-cineole: an attractant for the banana weevil, Cosmopolites sordidus. Phytochemistry 2:369–371.

    Article  Google Scholar 

  • Otálora-luna, F., Hammock, J. A., Alessandro, R. T., Lapointe, S. L, and Dickens, J. C. 2009. Discovery and characterization of chemical signals for citrus root weevil, Diaprepes abbreviatus. Arthropod-Plant Interact. 3:63–73.

    Article  Google Scholar 

  • Perez, A. L., Chinchilla, C. M., Oehlschlager, A. C., Gries, G., Gries, R., Giblindavis, R. M., Castrillo, G., Pena, J. E., Duncan, R. E., Gonzalez, L. M., Pierce, H. D., Mcdonald, R., Andrade, R., and Campos, Y. 1997. Aggregation pheromones and host kairomones of West Indian sugarcane weevil, Metamasius hemipterus sericeus. J. Chem. Ecol. 4:869–888.

    Article  Google Scholar 

  • Shiojiri, K., and Takabayashi, J. 2003. Effects of specialist parasitoids on oviposition preference of phytophagous insects: encounter-dilution effects in a tritrophic interaction. Ecol. Entom. 5:573–578.

    Article  Google Scholar 

  • Turlings, T. C. J., and Wäckers, F. L. 2004. Recruitment of predators and parasitoids by herbivore damaged plants, pp. 21–75 in R. T. Cardé, and J. Millar (eds.). Advances in Insect Chemical Ecology. Cambridge University Press, Cambridge, UK.

    Chapter  Google Scholar 

  • Vet, L. E. M., and Dicke, M. 1992. Ecology of infochemicals use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Article  Google Scholar 

  • Wakefield, M. E., Bryning, G. P., and Chambers, J. 2005. Progress towards a lure to attract three stored product weevils, Sitophilus zeamais Motschulsky, S. oryzae (L.) and S. granarius (L.)(Coleoptera: Curculionidae). J. Stored Prod. Res. 41:145–161.

    Article  CAS  Google Scholar 

  • Wang, Y., and Kays, S. J. 2002. Sweetpotato volatile chemistry in relation to sweetpotato weevil (Cylas formicarius) behavior. J. Amer. Soc. Hort. Sci. 127:656–662.

    CAS  Google Scholar 

  • Yan, F. M., Bengtsson, M., Makranczy, G., and Witzgall, P. 2003. Roles of α-farnesene in the behaviors of codling moth females. Z. Naturforsch. C58: 113–118.

    Google Scholar 

  • Zhu, J. Q., Shang, J. N., and Guo, M. M. 1988. Study of the spatial distribution pattern and sampling technique of Myllocerinus aurolineatus Voss adults in the field. Entom. Knowl. 5:277–280.

    Google Scholar 

Download references

Acknowledgments

We thank Taro Maeda for providing chemical standards of DMNT; Dr. Jonathan David Sweeny for revising the English and providing suggestions for further investigation; and Emily Wheeler for editorial assistance. We thank Liang Su and Wen Zhang , who came from Jilin Agricultural University and Yangtze University as summer students in our group, for collecting and rearing weevils. The study was sponsored by the National Natural Science Foundation of China (200930771449), and the Science and Technology Department of Zhejiang Province (2009C32052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Mao Chen.

Additional information

Xiao-Ling Sun and Guo-Chang Wang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, XL., Wang, GC., Cai, XM. et al. The Tea Weevil, Myllocerinus aurolineatus, is Attracted to Volatiles Induced by Conspecifics. J Chem Ecol 36, 388–395 (2010). https://doi.org/10.1007/s10886-010-9771-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9771-9

Key Words

Navigation