Skip to main content

Advertisement

Log in

Production and Diversity of Volatile Terpenes from Plants on Calcareous and Siliceous Soils: Effect of Soil Nutrients

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Fertilizer effects on terpene production have been noted in numerous reports. In contrast, only a few studies have studied the response of leaf terpene content to naturally different soil fertility levels. Terpene content, as determined by gas chromatography/mass spectrometry/flame ionization detector, and growth of Pinus halepensis, Rosmarinus officinalis, and Cistus albidus were studied on calcareous and siliceous soils under field conditions. The effect of nitrogen (N) and extractable phosphorus (PE) from these soils on terpenes was also investigated since calcareous soils mainly differ from siliceous soils in their higher nutrient loadings. Rich terpene mixtures were detected. Twenty-one terpenes appeared in leaf extracts of R. officinalis and C. albidus and 20 in P. halepensis. Growth of all species was enhanced on calcareous soils, while terpene content showed a species-specific response to soil type. The total monoterpene content of P. halepensis and that of some major compounds (e.g., δ-terpinene) were higher on calcareous than on siliceous soils. A significant and positive relationship was found between concentration of N and PE and leaf terpene content of this species. These findings suggest that P. halepensis may respond to an environment characterized by increasing soil deposition, by allocating carbon resources to the synthesis of terpene defense metabolites without growth reduction. Results obtained for R. officinalis showed high concentrations of numerous major monoterpenes (e.g., myrcene, camphor) in plants growing on calcareous soils, while α-pinene, β-caryophyllene, and the total sesquiterpene content were higher on siliceous soils. Finally, only alloaromadendrene and δ-cadinene of C. albidus showed higher concentrations on siliceous soils. Unlike P. halepensis, soil nutrients were not involved in terpene variation in calcareous and siliceous soils of these two shrub species. Possible ecological explanations on the effect of soil type for these latter two species as well as the ecological explanation of rich terpene mixtures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, R. P. 1989. Identification of essential oils by ion trap mass spectroscopy. Harcourt Brace Jovanovivh, San Diego, USA.

    Google Scholar 

  • Albert, A., Jahandiez, E. 1985. Catalogue des plantes vasculaires du Var. Museum d’histoire naturelle de Toulon, Paris.

    Google Scholar 

  • Baldwin, I. T., Kessler, A., and Halitschke, R. 2002. Volatile signaling in plant–plant–herbivore interactions: what is real? Curr. Opin. Plant Biol. 5:351–354.

    Article  PubMed  CAS  Google Scholar 

  • Barnola, L. F., and Cedeño, A. 2000. Inter-population differences in the essential oils of Pinus caribaea needles. Biochem. Syst. Ecol. 28:923–931.

    Article  CAS  Google Scholar 

  • Bjorkman, C., Larsson, S., and Gref, R. 1991. Effects of nitrogen-fertilization on pine needle chemistry and sawfly performance. Oecologia 86:202–209.

    Article  Google Scholar 

  • Bjorkman, C., Kyto, M., Larsson, S., and Niemela, P. 1998. Different responses of two carbon-based defences in Scots pine needles to nitrogen fertilization. Ecoscience 5:502–507.

    Google Scholar 

  • Bottega, S., and Corsi, G. 2000. Structure, secretion and possible functions of calyx glandular hairs of Rosmarinus officinalis L. (Lamiaceae). Bot. J. Linn. Soc. 132:325–335.

    Article  Google Scholar 

  • Caissard, J. C., Meekijjironenroj, A., Baudino, S., and Anstett, M. C. 2004. Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae). Am. J. Bot. 91:1190–1199.

    Article  Google Scholar 

  • Canadell, J., and Vila, M. 1992. Variation in tissue element concentrations in Quercus ilex L over a range of different soils. Vegetatio 100:273–282.

    Article  Google Scholar 

  • Castells, E., and Peñuelas, J. 2003. Is there a feedback between N availability in siliceous and calcareous soils and Cistus albidus leaf chemical composition? Oecologia 136:183–192.

    Article  PubMed  Google Scholar 

  • Close, D. C., McArthur, C., Pietrzykowski, E., Fitzgerald, H., and Paterson, S. 2004. Evaluating effects of nursery and post-planting nutrient regimes on leaf chemistry and browsing of eucalypt seedlings in plantations. For. Ecol. Manag. 200:101–112.

    Article  Google Scholar 

  • D'Alessandro, M., and Turlings, T. C. J. 2006. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32.

    Article  PubMed  CAS  Google Scholar 

  • Delfine, S., Loreto, F., Pinelli, P., Tognetti, R., and Alvino, A. 2005. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agr. Ecosyst. Environ. 106:243–252.

    Article  CAS  Google Scholar 

  • Diab, Y., Auezova, L., Chebib, H., Chalchat, J. C., and Figueredo, G. 2002. Chemical composition of Lebanese rosemary (Rosmarinus officinalis L.) essential oil as a function of the geographical region and the harvest time. J. Essent. Oil. Res. 14:449–452.

    CAS  Google Scholar 

  • Dicke, M., vanPoecke, R. M. P., and deBoer, J. G. 2003. Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl. Ecol. 4:27–42.

    Article  CAS  Google Scholar 

  • Dob, T., Berramdane, T., and Chelgoum, C. 2005. Chemical composition of essential oil of Pinus halepensis Miller growing in Algeria. C. R. Chimie. 8:1939–1945.

    CAS  Google Scholar 

  • Elamrani, A., Zrira, S., Benjilali, B., and Berrada, M. 2000. A study of Moroccan rosemary oils. J. Essent. Oil. Res. 12:487–495.

    CAS  Google Scholar 

  • Firn, R. D., and Jones, C. G. 2003. Natural products—a simple model to explain chemical diversity. Nat. Prod. Rep. 20:382–391.

    Article  PubMed  CAS  Google Scholar 

  • Flamini, G., Cioni, P. L., Morelli, I., Maccioni, S., and Baldini, R. 2004. Phytochemical typologies in some populations of Myrtus communis L. on caprione promontory (East Liguria, Italy). Food Chem. 85:599–604.

    Article  CAS  Google Scholar 

  • Flesh, V., Jacques, M., Cosson, L., Teng, B. P., Petiard, V., and Balz, J. P. 1992. Relative importance of growth and light level on terpene content of Gingo biloba. Phytochemistry 31:1941–1945.

    Article  Google Scholar 

  • Ghanmi, M., ElAbid, A., Chaouch, A., Aafi, A., Aberchane, M., ElAlami, A., and Farah, A. 2005. The yield and the chemical composition of turpentine of the maritime Pine (Pinus pinaster) and the Aleppo Pine (Pinus halepensis) of Morocco. Acta Bot. Gallica 152:3–10.

    CAS  Google Scholar 

  • Giordani, R., Regli, P., Kaloustian, J., Mikail, C., Abou, L., and Portugal, H. 2004. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother. Res. 18:990–995.

    Article  PubMed  CAS  Google Scholar 

  • Gorenflot, R. 1998. Biologie végétale. Plantes supérieures: appareil végétatif. Masson, Paris.

    Google Scholar 

  • Guenther, E. 1949. The essential oil. Van Nostrand, New York.

    Google Scholar 

  • Gulz, P. G., Herrmann, T., and Hangst, K. 1996. Leaf trichomes in the genus Cistus. Flora 191:85–104.

    Google Scholar 

  • Hamilton, J. G., Zangerl, A. R., Delucia, E. H., and Berenbaum, M. R. 2001. The carbon–nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4:86–95.

    Article  Google Scholar 

  • Haynes, R. 1982. Effects of liming on phosphate availability in acid soils. Plant Soil 68:289–308.

    Article  CAS  Google Scholar 

  • Hemming, J. D. C., and Lindroth, R. L. 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry and insect performance. J. Chem. Ecol. 25:1687–1714.

    Article  CAS  Google Scholar 

  • Heyworth, C. J., Iason, G. R., Temperton, V., Jarvis, P. G., and Duncan, A. J. 1998. The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. Oecologia 115:344–350.

    Article  Google Scholar 

  • Jennings, W., and Shibamoto, T. 1980. Quantitative analysis of flavour and fragrance volatiles by glass capillary gas chromatography. Academic, New York.

    Google Scholar 

  • Jones, C. G., and Firn, R. D. 1991. On the evolution of plant secondary chemical diversity. Philos. Trans. R. Soc. B. Philos. 333:273–280.

    Article  Google Scholar 

  • Kainulainen, P., Holopainen, J., Palomaki, V., and Holopainen, T. 1996. Effects of nitrogen fertilization on secondary chemistry and ectomycorrhizal state of Scots pine seedlings and on growth of grey pine aphid. J. Chem. Ecol. 22:617–636.

    Article  CAS  Google Scholar 

  • Kainulainen, P., Utriainen, J., Holopainen, J. K., Oksanen, J., and Holopainen, T. 2000. Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open-air fumigation system: effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compounds. Glob. Chang Biol. 6:345–355.

    Article  Google Scholar 

  • Keeling, C. I., and Bohlmann, J. 2006. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 170:657–675.

    Article  PubMed  CAS  Google Scholar 

  • King, D. J., Gleadow, R. M., and Woodrow, I. E. 2004. Terpene deployment in Eucalyptus polybractea: relationships with leaf structure, environmental stresses, and growth. Funct. Plant Biol. 31:451–460.

    Article  CAS  Google Scholar 

  • Lahlou, M., and Berrada, R. 2003. Composition and niticidal activity of essential oils of three chemotypes of Rosmarinus officinalis L. acclimatized in Morocco. Flavour Fragr. J. 18:124–127.

    Article  CAS  Google Scholar 

  • Llusià, J., and Peñuelas, J. 2000. Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am. J. Bot. 87:133–140.

    Article  PubMed  Google Scholar 

  • Loreto, F. 2002. Distribution of isoprenoid emitters in the Quercus genus around the world: chemo-taxonomical implications and evolutionary considerations based on the ecological function of the trait. Perspect. Plant Ecol. 5:185–192.

    Article  Google Scholar 

  • Lu, C., Tian, H., and Huang, Y. 2007. Ecological effects of increased nitrogen deposition in terrestrial ecosystem. J. Plant Ecol. 31:205–218.

    CAS  Google Scholar 

  • McCullough, D. G., and Kulman, H. M. 1991. Effects of nitrogen-fertilization on young jack pine (Pinus-Banksiana) and on its suitability as a host for jack pine budworm (Choristoneura-Pinus-Pinus) (Lepidoptera, Tortricidae). Can. J. For. Res. 21:1447–1458.

    Article  Google Scholar 

  • Muzika, R. M., Pregitzer, K. S., and Hanover, J. W. 1989. Changes in terpene production following nitrogen-fertilization of grand fir (Abies-Grandis (Dougl) Lindl) seedlings. Oecologia 80:485–489.

    Article  Google Scholar 

  • Ormeño, E. 2006. Strategies d'émission de composés organiques volatils (COV) par quatre espèces végétales méditerranéenes. Ph.D. dissertation, Aix Marseille I, Marseille.

  • Ormeño, E., Fernandez, C., and Mévy, J. P. 2007a. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68:840–852.

    Article  PubMed  CAS  Google Scholar 

  • Ormeño, E., Bousquet-Melou, A., Mévy, J. P., Greff, S., Robles, C., Bonin, G., and Fernandez, C. 2007b. Effect of intraspecific competition and substrate type on terpene emissions of some Mediterranean species. J. Chem. Ecol. 33:277–286.

    Article  PubMed  CAS  Google Scholar 

  • Ormeño, E., Fernandez, C., Bousquet-Melou, A., Greff, S., Morin, E., Robles, C., Vila, B., and Bonin, G. 2007c. Monoterpene and sesquiterpene emissions of three Mediterranean species through calcareous and siliceous soils in natural conditions. Atmos. Environ. 41:629–639.

    Article  CAS  Google Scholar 

  • Panizzi, L., Flamini, G., Cioni, P. L., and Morelli, I. 1993. Composition and antimicrobial properties of essential oils of 4 Mediterranean Lamiaceae. J. Ethnopharmacol. 39:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Pasqua, G., Monacelli, B., Manfredini, C., Loreto, F., and Perez, G. 2002. The role of isoprenoid accumulation and oxidation in sealing wounded needles of Mediterranean pines. Plant Sci. 163:355–359.

    Article  CAS  Google Scholar 

  • Passama, L. 1970. Composition minérale de diverses espèces calcicoles et calcifuges de la région méditerranéene française. Oecol. Plant. 5:225–246.

    Google Scholar 

  • Peñuelas, J., and Llusià, J. 1997. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. J. Chem. Ecol. 23:979–993.

    Article  Google Scholar 

  • Peñuelas, J., and Llusià, J. 2002. Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol. 155:227–237.

    Article  Google Scholar 

  • Petrakis, P. V., Roussis, V., and Ortiz, A. 2000. Monoterpenoid diversity in relation to morphology of Pinus brutia and Pinus halepensis in an east Mediterranean area (Attiki, Greece): implications for pine evolution. Edinburgh. J. Bot. 57:349–375.

    Article  Google Scholar 

  • Rizvi, S. J. H., and Rizvi, V. 1992. Allelopathy. Basic and applied aspects. Chapman & Hall, London.

    Google Scholar 

  • Robles, C., and Garzino, S. 1998. Essential oil composition of Cistus albidus leaves. Phytochemistry 48:1341–1345.

    Article  CAS  Google Scholar 

  • Robles, C., and Garzino, S. 2000. Infraspecific variability in the essential oil composition of Cistus monspeliensis leaves. Phytochemistry 53:71–75.

    Article  PubMed  CAS  Google Scholar 

  • Sardans, J., Roda, F., and Penuelas, J. 2004. Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp rotundifolia on different soils. Plant Ecol. 174:305–317.

    Google Scholar 

  • Schindler, T., Kotzias, D., Spartà, C., and Versino, B. 1998. Comparison of monoterpene volatilization and leaf oil composition of conifers. Naturwissenschaften 76:475–476.

    Article  Google Scholar 

  • Schweingruber, F. H. 1988. Tree rings. basics and applications of dendrochronology. Reidel, Dordrecht.

    Google Scholar 

  • Seigler, D. S. 1998. Plant secondary metabolism. Kluwer, Dordrecht.

    Google Scholar 

  • Trabaud, L. 2001. Relation entre les teneurs en bio-éléments chez divers végétaux méditerranéens. Ann. For. Sci. 58:555–567.

    Article  Google Scholar 

  • Vuorinen, L., Nerg, A.-M., Syrjälä, L., Peltonen, P., and Holopainen, J. K. 2007. Epirrita autumnata induced VOC emission of silver birch differ from emission induced by leaf fungal pathogen. Arthropod-Plant Interactions 1:3159–165.

    Article  Google Scholar 

  • Wassner, D. E., and Ravetta, D. A. 2005. Temperature effects on leaf properties, resin content, and composition in Grindelia chiloensis (Asteraceae). Ind. Crop Prod. 21:155–163.

    Article  CAS  Google Scholar 

  • Zavala, J. A., and Ravetta, D. A. 2002. The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecol. 161:185–191.

    Article  Google Scholar 

Download references

Acknowledgements

This research was primarily funded by the French Agriculture Minister (DERF), the Environmental Agency (ADEME), and the Provence-Alpes-Côtes d’Azur (PACA) region. Authors wish Sylvie Dupouyet and Dr. Christiane Rolando for their collaboration in measurement campaigns, Laboratory of Chemistry and Environment (LCE, University of Provence, FRE 2704) for soil analysis, and Stephane Greff for his help using analytical methods. We thank Mr. Michael Paul for improvements to the English. All experiments conducted in this study comply with the French laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ormeño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ormeño, E., Baldy, V., Ballini, C. et al. Production and Diversity of Volatile Terpenes from Plants on Calcareous and Siliceous Soils: Effect of Soil Nutrients. J Chem Ecol 34, 1219–1229 (2008). https://doi.org/10.1007/s10886-008-9515-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9515-2

Keywords

Navigation