Skip to main content
Log in

Xenobiotic Metabolism of Plant Secondary Compounds in Oak (Quercus Agrifolia) by Specialist and Generalist Woodrat Herbivores, Genus Neotoma

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The challenge of consuming plant compounds that are recognized to have toxic physiological effects is an unavoidable consequence of an herbivorous diet and requires mechanisms to metabolize and eliminate them after consumption. We took a pharmacological approach to understanding how an oak (Quercus agrifolia) specialist (Neotoma macrotis) and generalist (N. lepida) herbivores process the same dietary toxins. Oak contains polyphenolic compounds considered toxic to most other mammals. N. macrotis includes up to 85% of oak in their diet. N. lepida includes oak as a portion of the diet but is considered a generalist in areas where sympatric with N. macrotis. Xenobiotic metabolizing enzyme activities of N. macrotis and N. lepida were investigated after animals were fed a 70% oak diet and a toxin-free control diet. Biotransformation activities of five major enzymes [cytochrome P450s (CYP), NAD(P)H/quinone oxidoreductase (QOR), UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), and glutathione S-transferase (GST)] and three specific CYP isozymes (CYP1A, CYP2B, and CYP3A) were investigated. The results indicate that, with the exception of CYP2B induction, N. macrotis and N. lepida enzyme activities are not changed by an oak diet. The major differences in enzyme activities were constitutive. The specialist, N. macrotis, had higher constitutive activity of QOR, UGT, and GST. The generalist, N. lepida, had higher constitutive activity levels of CYP1A and SULT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atsatt, S. R., and Ingram, T. 1983. Adaptation to oak and other fibrous, phenolic-rich foliage by a small mammal, Neotoma fuscipes. Oecologia 60:135–142.

    Article  Google Scholar 

  • Ayalogu, E. O., Snelling, J., Lewis, D. F., Talwar, S., Clifford, M. N., and Ioannides, C. 1995. Induction of hepatic CYP1A2 by the oral administration of caffeine to rats: lack of association with the Ah locus. Biochim. Biophys. Acta 1272:89–94.

    PubMed  Google Scholar 

  • Benson, A. M., Hunkeler, M. J., and Talalay, P. 1980. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc. Natl. Acad. Sci. USA 77:5216–20.

    Article  PubMed  CAS  Google Scholar 

  • Bock, K. W., Burchell, B., Dutton, G. J., Hanninen, O., Mulder, G. J., Owens, I. S., Siest, G., and Tephly, T. R. 1983. UDP-glucuronosyltransferase activities. Guidelines for consistent interim terminology and assay conditions. Biochem. Pharmacol. 32:953–5.

    Article  PubMed  CAS  Google Scholar 

  • Bodo, A., Bakos, E., Szeri, F., Varadi, A., and Sarkadi, B. 2003. The role of multidrug transporters in drug availability, metabolism and toxicity. Toxicol. Lett. 140–141:133–143.

  • Bolton, R. M. and Ahokas, J. T. 1997. Ontogenetic expression of detoxification enzymes in an Australian marsupial, the brushtail possum (Trichosurus vulpecula). Comp. Biochem. Physiol. 118B:239–247.

    CAS  Google Scholar 

  • Boyle, R., McLean, S., Foley, J. E., and Davies, N. W. 1999. Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials. J. Chem. Ecol. 25:2109–2127.

    Article  Google Scholar 

  • Boyle, R., McLean, S., Foley, W., Davies, N.W., Peacock, E.J., and Moore, B. 2001. Metabolites of dietary 1,8-cineole in the male koala (Phascolarctos cinereus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 129:385–95.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, G. N. 1971. Niche overlap and competition in woodrats. J. Mammal. 52:111.

    Article  Google Scholar 

  • Daniel, V. 1993. Glutathione S-transferases: gene structure and regulation of expression. Crit. Rev. Biochem. Mol. Biol. 28:173–207.

    PubMed  CAS  Google Scholar 

  • Danielson, P. B. 2002. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 3:561–97.

    Article  PubMed  CAS  Google Scholar 

  • Dearing, M. D., Skopec, M. M., and Bastiani, M. J. 2006. Detoxification rates of wild herbivorous woodrats (Neotoma). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 145: 419–422.

    Article  PubMed  CAS  Google Scholar 

  • Dutton, G. J. 1980. Glucuronidation of Drugs and Other Compounds. Boca Raton: CRC Press.

    Google Scholar 

  • Feeny, P. P. 1970. Seasonal changes in Oak leaf tannins and nutrients as a cause of spring feeding in winter-moth caterpillars. Ecology 51:656–681.

    Article  Google Scholar 

  • Foley, W. J., and McArthur, C. 1994. The effects and costs of allelochemicals for mammalian herbivores: an ecological perspective, pp. 370–391, in D. J. Chivers, P. Langer (ed.). The Digestive System in Mammals: Food, Form and Function. Cambridge: Cambridge University Press.

    Google Scholar 

  • Franklin, M. R., and Estabrook, R. W. 1971. On the inhibitory action of mersalyl on microsomal drug oxidation: a rigid organization of the electron transport chain. Arch. Biochem. Biophys. 143:318–29.

    Article  PubMed  CAS  Google Scholar 

  • Freeland, W. J., and Janzen, D. H. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Naturalist 108:269–289.

    Article  CAS  Google Scholar 

  • Gregus, Z., Watkins, J. B., Thompson, T. N., Harvey, M.J., Rozman, K., and Klaassen, C. D. 1983. Hepatic phase I and phase II biotransformations in quail and trout: comparisons to other species commonly used in toxicity testing. Toxicol. Appl. Pharmacol. 67:430–441.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F. P., Muller-Enoch, D., and Blair, I. A. 1986. Oxidation of quinidine by human liver cytochrome P-450. Mol. Pharmacol. 30:287–95.

    PubMed  CAS  Google Scholar 

  • Habig, W. H. and Jakoby, W. B. 1981. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 77:398–405.

    PubMed  CAS  Google Scholar 

  • Haukioja, E., Niemela, P., and Siren, S. 1985. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation, in the mountain birch Betula pubescens ssp. tortuosa. Oecologia 65:214–222.

    Article  Google Scholar 

  • Hiroi, T., Miyazaki, Y., Kobayashi, Y., Imaoka, S., and Funae, Y. 1995. Induction of hepatic P450s in rat by essential wood and leaf oils. Xenobiotica 25:457–67.

    Article  PubMed  CAS  Google Scholar 

  • Iason, G. R. and Murray, A. H. 1996. The energy costs of ingestion of naturally occurring nontannin plant phenolics by sheep. Physiol. Zool. 69:532–546.

    CAS  Google Scholar 

  • Klaassen, C. D. and Boles, J. W. 1997. Sulfation and sulfotransferases 5: the importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 11:404–18.

    PubMed  CAS  Google Scholar 

  • Klotz, A. V., Stegeman, J. J., and Walsh, C. 1984. An alternative 7-ethoxyresorufin O-deethylase activity assay: a continuous visible spectrophotometric method for measurement of cytochrome P-450 monooxygenase activity. Anal. Biochem. 140:138–45.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, Y. H., Lin, Y. L., Don, M. J., Chen, R. M., and Ueng, Y. F. 2006. Induction of cytochrome P450-dependent monooxygenase by extracts of the medicinal herb Salvia miltiorrhiza. J. Pharm. Pharmacol. 58:521–7.

    Article  PubMed  CAS  Google Scholar 

  • Lindroth, R. L., and Batzli, G. O. 1984. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles (Microtus ochrogaster). J. Chem. Ecol. 10:229–244.

    Article  CAS  Google Scholar 

  • Liukkonen-Anttila, T., Honkanen, H., Peltokangas, P., Pelkonen, O., and Hohtola, E. 2003. Cytochrome P450 enzyme activity in five herbivorous, non-passerine bird species. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 134:69–77.

    Article  PubMed  Google Scholar 

  • Lowry, O. H. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  • Lubet, R. A., Mayer, R. T., Cameron, J. W., Nims, R. W., Burke, M. D., Wolff T., and Guengerich, F. P. 1985. Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Arch. Biochem. Biophys. 238:43–8.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, K. J., Wallis, I. R., Andrew, R. L., and Foley, W. J. 2006. The Detoxification Limitation Hypothesis: Where Did it Come From and Where is it Going? J. Chem. Ecol. 32:1247–1266.

    Article  PubMed  CAS  Google Scholar 

  • Matocq, M. D. 2002. Morphological and molecular analysis of a contact zone in the Neotoma fuscipes species complex. J. Mammal. 83:866–883.

    Article  Google Scholar 

  • McLean, S., and Foley, J. E. 1997. Metabolism of Eucalyptus terpenes by herbivorous marsupials. Drug Metab. Rev. 29:213–218.

    PubMed  CAS  Google Scholar 

  • McLean, S., Foley, W. J., Davies, N. W., Brandon, S., Duo, L., and Blackman, A. J. 1993. Metabolic fate of dietary terpenes from Eucalyptus radiata in common ringtail possum (Pseudocheirus peregrinus). J. Chem. Ecol. 19:1625–1643.

    Article  CAS  Google Scholar 

  • McLean, S., Pass, G. J., Foley, W. J., Brandon, S., and Davies, N. W. 2001. Does excretion of secondary metabolites always involve a measurable metabolic cost? Fate of plant antifeedant salicin in common brushtail possum, Trichosurus vulpecula. J. Chem. Ecol. 27:1077–89.

    Article  PubMed  CAS  Google Scholar 

  • Omura, T., and Sato, R. 1964. The carbon monoxide binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239:2370–2378.

    PubMed  CAS  Google Scholar 

  • Parkinson, A. 1996. Biotransformation of xenobiotics. pp. 113–186 in: Klaassen CD, editor. Casarett and Doull’s Toxicology the Basic Science of Poisons. 5th ed. New York: McGraw-Hills.

    Google Scholar 

  • Pass, G. J., McLean, S., and Stupans, I. 1999. Induction of xenobiotic metabolising enzymes in the common brushtail possum, Trichosurus vulpecula, by Eucalyptus terpenes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 124:239–246.

    Article  PubMed  CAS  Google Scholar 

  • Pass, G. J., McLean, S., Stupans, I., and Davies, N. 2001. Microsomal metabolism of the terpene 1,8-cineole in the common brushtail possum (Trichosurus vulpecula), koala (Phascolarctos cinereus), rat and human. Xenobiotica 31:205–221.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, D. F. 1985. Offensive–defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. Am. Naturalist 125:205–238.

    Article  Google Scholar 

  • Rossiter, M., Schultz, J. C., and Baldwin, I. T. 1988. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69:267–277.

    Article  CAS  Google Scholar 

  • Sekura, R. D., Duffel, M. W., and Jakoby, W. B. 1981. Aryl sulfotransferases. Methods Enzymol. 77:197–206.

    Article  PubMed  CAS  Google Scholar 

  • Sivapathasundaram, S., Magnisali, P., Coldham, N. G., Howells, L. C., Sauer, M. J., and Ioannides C. 2003a. Cytochrome P450 expression and testosterone metabolism in the liver of deer. Toxicology 187:49–65.

    Article  PubMed  CAS  Google Scholar 

  • Sivapathasundaram, S., Sauer, M. J., and Ioannides, C. 2003b. Xenobiotic conjugation systems in deer compared with cattle and rat. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 134:169–73.

    Article  PubMed  Google Scholar 

  • Stupans, I., Kong, S., Kirlich, A., Murray, M., Bailey, E. L., Jones, B. R., and Mckinnon, R. A. 1999. Hepatic microsomal enzyme activity in the koala and tammar wallaby: high 17 beta-hydroxysteroid oxidoreductase activity in koala liver microsomes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 123:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Szaefer, H., Jodynis-Liebert, J., Cichocki, M., Matuszewska, A., and Baer-Dubowska, W. 2003. Effect of naturally occurring plant phenolics on the induction of drug metabolizing enzymes by o-toluidine. Toxicology 186:67–77.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. W., Samson, C., and Bergeron, J. 1988. Metabolic costs associated with the ingestion of plant phenolics by Microtus pennsylvanicus. J. Mammal. 69:512–515.

    Article  Google Scholar 

  • Vang, O., Frandsen, H., Hansen, K. T., Nielsen, J. B., and Andersen, O. 1999. Modulation of drug-metabolising enzyme expression by condensation products of indole-3-ylcarbinol, an inducer in cruciferous vegetables. Pharmacol. Toxicol. 84:59–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank committee members Dr. G. Yost, Dr. F. Goller, Dr. D. Feener for their invaluable input. We also thank Dr. J. Sorensen, Dr. M. Skopec and Ann-Marie Torregrossa for critical reading of the manuscript and the undergraduates in Dr. Dearing’s lab, especially Katie Young and John Matthews, for assistance with feeding, tissue collection as well as collection and maintenance of woodrats. Research was supported by National Science Foundation (NSF IBN 023402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon L. Haley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haley, S.L., Lamb, J.G., Franklin, M.R. et al. Xenobiotic Metabolism of Plant Secondary Compounds in Oak (Quercus Agrifolia) by Specialist and Generalist Woodrat Herbivores, Genus Neotoma . J Chem Ecol 33, 2111–2122 (2007). https://doi.org/10.1007/s10886-007-9371-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9371-5

Keywords

Navigation