Skip to main content
Log in

Metabolic fate of dietary terpenes fromEucalyptus radiata in common ringtail possum (Pseudocheirus peregrinus)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Arboreal marsupials consume terpenes in quantities that are toxic to other mammals, indicating that they possess special detoxification mechanisms. The metabolic fate of dietary terpenes was studied in the common ringtail possum (Pseudocheirus peregrinus). Three animals were fedEucalyptus radiata leaf for 10 days. Leaf consumption increased over three days to an average steady state of about 10–15 mmol total terpenes per day. GCMS analysis identified six urinary terpene metabolites, which were dicarboxylic acids, hydroxyacids, or lactones. Another nine metabolites could only be shown to be terpene-derived but of unknown structure. The amounts excreted were estimated by GC-FID, using response factors based on carbon content. Total 24-hr excretion of terpene-derived metabolites increased to 6.2–7.6 mmol on days 5–10, while glucuronic acid excretion remained constant at about 1.5 mmol. No other conjugates of terpene metabolites were found. The strategy used by the possum to detoxify dietary terpenes seems to be to polyoxygenate the molecules forming highly polar, acidic metabolites that can be readily excreted. Conjugation is minimal, perhaps to conserve carbohydrate and amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asakawa, Y., Toyota, M., andIshida, T. 1988. Biotransformation of 1,4-cineole, a monoterpene ether.Xenobiotica 18:1129–1134.

    PubMed  Google Scholar 

  • Awaluddin, A., andMcLean, S. 1985. Conjugation of benzoic acid in marsupials.Aust. J. Zool. 33:693–698.

    Google Scholar 

  • Boland, D., Brophy, J.J., andHouse, A.P.N. 1991. Eucalyptus Oil. Australian Centre for International Agricultural Research, Canberra, p. 131.

    Google Scholar 

  • Bridges, J.W., French, M.R., Smith, R.L., andWilliams, R.T. 1970. The fate of benzoic acid in various species.Biochem. J. 118:47–51.

    PubMed  Google Scholar 

  • Caldwell, J. 1982. Conjugation reactions in foreign compound metabolism: definition, consequences, and species variations.Drug Metab. Rev. 13:745–777.

    PubMed  Google Scholar 

  • Carman, R.M., andKlika, K.D. 1992. Partially racemic compounds as brushtail possum urinary metabolites.Aust. J. Chem. 45:651–657.

    Google Scholar 

  • Cork, S.J. 1986. Foliage ofEucalyptus punctata and the maintenance nitrogen requirements of koalasPhascolarctos cinereus.Aust. J. Zool. 34:17–23.

    Google Scholar 

  • Cork, S.J., andFoley, W.J. 1991. Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defenses in temperate and tropical forests, pp. 133–166.in R.T. Palo and C.T. Robbins (eds.). Plant Defenses against Mammalian Herbivory. CRC Press, Boca Raton.

    Google Scholar 

  • Dash, J.A. 1988. Effect of dietary terpenes on glucuronic acid excretion and ascorbic acid turnover in the brushtail possum (Trichosurus vulpecula).Comp. Biochem. Physiol. 89:221–226.

    Google Scholar 

  • Eberhard, I.H., McNamara, J., Pearse, R.J., andSouthwell, I.A. 1975. Ingestion and excretion ofEucalyptus punctata D.C. and its essential oil by the koala,Phascolarctos cinereus (Goldfuss).Aust. J. Zool. 23:169–179.

    Google Scholar 

  • Faed, E.M. 1984. Properties of acyl glucuronides: Implications for studies of the pharmacokinetics and metabolism of acidic drugs.Drug Metab. Rev. 15:1213–1249.

    PubMed  Google Scholar 

  • Fishman, W.H., andGreen, S. 1955. Microanalysis of glucuronide glucuronic acid as applied toΒ-glucuronidase and glucuronic acid studies.J. Biol. Chem. 215:527–537.

    PubMed  Google Scholar 

  • Flynn, T.M., andSouthwell, I.A. 1979. 1,3-Dimethyl-2-oxabicyclo[2,2,2]-octane-3-methanol and 1,3-dimethyl-2-oxabicyclo{2,2,2] octane-3-carboxylic acid, urinary metabolites of 1,8-cineole.Aust. J. Chem. 32:2093–2095.

    Google Scholar 

  • Foley, W.J. 1987. Digestion and metabolism in a small arboreal marsupial, the greater glider, (Petauroides volans) fed high terpeneEucalyptus foliage.J. Comp. Physiol. 157:355–362.

    Google Scholar 

  • Foley, W.J. 1992. Nitrogen and energy retention and acid-base status in the common ringtail possum (Pseudocheirus peregrinus): Evidence of the effects of absorbed allelochemicals.Physiol. Zool. 65:403–421.

    Google Scholar 

  • Foley, W.J., andHume, I.D. 1987. Nitrogen requirements and urea metabolism in two arboreal marsupials, the greater glider (Petauroides volans) and the brushtail possum (Trichosurus vulpecula) fedEucalyptus foliage.Physiol. Zool. 60:241–250.

    Google Scholar 

  • Foley, W.J., Lassak, E.V., andBrophy, J. 1987. Digestion and absorption ofEucalyptus essential oils in greater glider (Petauroides volans) and brushtail possum (Trichosurus vulpecula).J. Chem. Ecol. 13:2115–2130.

    Google Scholar 

  • Hinks, N.T., andBollinger, A. 1957a. Gluconuria in marsupials.Aust. J. Sci. 19:228–229.

    Google Scholar 

  • Hinks, N.T., andBollinger, A. 1957b. Gluconuria in a herbivorous marsupial,Trichosurus vulpecula.Aust. J. Exp. Biol. 35:37–44.

    Google Scholar 

  • Ishida, T., Asakawa, Y., Okano, M., andAratani, T. 1977. Terpenoid biotransformation in mammals. I. Biotransformation of 3-carene and related compounds in rabbits.Tetrahedron Lett. 28:2437–2440.

    Google Scholar 

  • Ishida, T., Asakawa, Y., Takemoto, T., andAratani, T. 1979. Terpenoid biotransformation in mammals. II. Biotransformation ofdl-camphene in rabbits.J. Pharm. Sci. 68:928–930.

    PubMed  Google Scholar 

  • Ishida, T., Asakawa, Y., Takemoto, T., andAratani, T. 1981. Terpenoid biotransformation in mammals. III. Biotransformation ofα-pinene,Β-pinene, pinane, 3-carene, carane, myrcene, andp-cymene in rabbits.J. Pharm. Sci. 70:406–415.

    PubMed  Google Scholar 

  • Ishida, T., Toyota, M., andAsakawa, Y. 1989. Terpenoid biotransformation in mammals. V. Metabolism of (+)-citronellal, (±)-7-hydroxycitronellal, citral, (−)-perillaldehyde, (−)-myrtenal, cuminaldehyde, thujone, and (±)-carvone in rabbits.Xenobiotica. 19:843–855.

    PubMed  Google Scholar 

  • Jorgensen, A.D., Picel, K.C., andStamoudis, V.C. 1990. Prediction of gas chromatography flame ionization detector response factors from molecular structure.Anal. Chem. 62:683–689.

    Google Scholar 

  • Levy, G. 1965. Pharmacokinetics of salicylate elimination in man.J. Pharm. Sci. 54:959–967.

    PubMed  Google Scholar 

  • Madyastha, K.M., andSrivatsan, V. 1988. Studies on the metabolism ofl-menthol in rats.Drug Metab. Dispos. 16:765–772.

    PubMed  Google Scholar 

  • Martindale, 1989. The Extra Pharmacopoeia, 29th ed., Pharmaceutical Society, London, p. 1063.

    Google Scholar 

  • Marsh, C.A. 1969. The mode of glucuronic acid excretion in marsupials.Proc. Aust. Biochem. Soc. 2:15.

    Google Scholar 

  • Marsh, M.V., Caldwell, J., Smith, R.L., Horner, M.W., Houghton, E., andMoss, M.S. 1981. Metabolic conjugation of some carboxylic acids in the horse.Xenobiotica 11:655–663.

    PubMed  Google Scholar 

  • Miller, J.H., andMorris, L.L. 1982. Mechanisms of organic acid and monosaccharide transport in the kidney of the brush-tailed possum,Trichosurus vulpecula.Aust. J. Biol. Sci. 35:363–372.

    PubMed  Google Scholar 

  • Moller, J.V., andSheikh, M.I. 1983. Renal organic anion transport system: pharmacological, physiological, and biochemical aspects.Pharmacol. Rev. 34:315–358.

    Google Scholar 

  • Morrow, P.A., andFox, L.R. 1980. Effects of variation inEucalyptus essential oil yield on insect growth and grazing damage.Oecologia. 45:209–219.

    Google Scholar 

  • Roy, A.B. 1963. The arylsulphatases and related enzymes in the livers of some lower vertebrates.Aust. J. Exp. Biol. 41:331–342.

    Google Scholar 

  • Southwell, I.A. 1975. Essential oil metabolism in the koala III. Novel urinary monoterpenoid lactones.Tetrahedron Lett. 24:1885–1888.

    Google Scholar 

  • Southwell, I.A., Flynn, T.M., andDegabriele, R. 1980. Metabolism ofα- andΒ-pinene,p-cymene and 1,8-cineole in the brushtail possum,Trichosurus vulpecula.Xenobiotica 10:17–23.

    PubMed  Google Scholar 

  • Vogel, A.I. 1956. Practical Organic Chemistry. Longmans, London, pp. 970–973.

    Google Scholar 

  • Walde, A., Ve, B., andScheline, R.R. 1983.p-Cymene metabolism in rats and guinea pigs.Xenobiotica. 13:503–512.

    PubMed  Google Scholar 

  • Williams, R.T. 1959. Detoxication Mechanisms. Chapman & Hall, London, (a) pp. 519–540; (b) pp. 359–360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLean, S., Foley, W.J., Davies, N.W. et al. Metabolic fate of dietary terpenes fromEucalyptus radiata in common ringtail possum (Pseudocheirus peregrinus). J Chem Ecol 19, 1625–1643 (1993). https://doi.org/10.1007/BF00982297

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00982297

Key words

Navigation