Skip to main content
Log in

Nutritional Requirements and Diet Choices of the Pygmy Rabbit (Brachylagus idahoensis): A Sagebrush Specialist

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Sagebrush (Artemisia tridentata) comprises up to 99% of the winter and 50% of the summer diets of pygmy rabbits (Brachylagus idahoensis). Few animals specialize on such plants as sagebrush, which contain high levels of plant chemicals that can be toxic. We investigated the nutritional requirements of pygmy rabbits and their ability and propensity to consume sagebrush alone and as part of a mixed diet. We compared diet choices of pygmy rabbits with that of a generalist forager, the eastern cottontail (Sylvilagus floridanus). Pygmy rabbits had a moderately low nitrogen requirement (306.5 mg N/kg0.75/d), but a relatively high energy requirement, needing 750.8 kJ digestible energy/kg0.75/d to maintain their body mass while residing in small cages. They digested fiber in pelleted diets similarly to other small hindgut fermenters, but both cottontails and pygmy rabbits digested the fiber in sagebrush better than expected based on its indigestible acid detergent lignin content. Pygmy rabbits consumed more sagebrush than cottontails, regardless of the amount and nutritional quality of supplemental pellets provided. When consuming sagebrush alone, they ate barely enough to meet their energy requirements, whereas cottontails ate only enough sagebrush to meet 67% of theirs. Both rabbit species ate more sagebrush as the quality and quantity of supplemental pellets declined, and more greenhouse-grown sagebrush than sagebrush grown outside. Urine was more acidic when consuming sagebrush than when consuming pellets, indicating detoxification by the liver. Pygmy rabbits do not require sagebrush to survive, but seem to tolerate terpenes and other plant chemicals in sagebrush better than cottontails do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boyle, R. R. and McLean, S. 2004. Constraint of feeding by chronic ingestion of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 30:757–775.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, R. T., McLean, S., Davies, N., Foley, W., and Moore, B. 1999. Folivorous specialization: adaptations in the detoxification of the dietary terpene, p-cymene, in Australian marsupial folivores. Am. Zool. 39:120A.

    Google Scholar 

  • Bray, R. O., Wambolt, C. L., and Kelsey, R. G. 1991. Influence of sagebrush terpenoids on mule deer preference. J. Chem. Ecol. 17:2053–2062.

    Article  CAS  Google Scholar 

  • Brown, D. R., Asplund, O., and McMahon, V. A. 1975. Phenolic constituents of Artemisia tridentata sp. vaseyana. Phytochemistry 14:1083–1084.

    Article  CAS  Google Scholar 

  • Burritt, E. A., Banner, R. E., and Provenza, F. D. 2000. Sagebrush ingestion by lambs: effects of experience and macronutrients. J. Range Manag. 53:91–96.

    Google Scholar 

  • Cluff, L. K., Welch, B. L., Pederson, J. C., and Brotherson, J. D. 1982. Concentration of monoterpenoids in the rumen ingesta of wild mule deer. J. Range Manag. 35:192–194.

    Google Scholar 

  • Cork, S. J. and Foley, W. J. 1991. Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defenses in temperate and tropical forests, pp. 133–155, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Dearing, M. D., Mangione, A. M., and Karasov, W. H. 2000. Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397–405.

    Article  Google Scholar 

  • Dearing, M. D., Foley, W. J., and McLean, S. 2005. The influence of plant secondary metabolites in the nutritional ecology of herbivorous terrestrial vertebrates. Annu. Rev. Ecol. Evol. Syst. 36:169–189.

    Article  Google Scholar 

  • Demment, M. W. and Van Soest, P. J. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125:641–672.

    Article  Google Scholar 

  • Dial, K. P. 1988. Three sympatric species of Neotoma: dietary specialization and coexistence. Oecologia 76:531–537.

    Google Scholar 

  • Federal Register, November 10, 2003. Endangered and threatened wildlife and plants; Final rule to list the Columbia Basin Distinct Population Segment of Pygmy Rabbits (Brachylagus idahoensis) as endangered. 68:10388–10409.

  • Federal Register, May 20, 2005. Endangered and threatened wildlife and plants: 90-day finding on petition to list the pygmy rabbit as threatened and endangered. 70:29253–29265.

  • Foley, W. J. 1992. Nitrogen and energy retention and acid–base status in the common ringtail possum (Pseudocheirus peregrinus): Evidence of the effects of absorbed allelochemicals. Phys. Zool. 65:403–421.

    CAS  Google Scholar 

  • Foley, W. J., McLean, S., and Cork, S. J. 1995. Consequences of biotransformation of plant secondary metabolites on acid–base metabolism in mammals—A final common pathway? J. Chem. Ecol. 21:721–743.

    Article  CAS  Google Scholar 

  • Freeland, W. J. 1991. Plant secondary metabolites: biochemical coevolution with herbivores, pp. 61–81, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Freeland, W. J. and Janzen, D. H. 1974. Strategies in herbivory by mammals: the role of secondary compounds. Am. Nat. 108:269–289.

    Article  CAS  Google Scholar 

  • Gershenzon, J. and Croteau, R. 1991. Herbivores: their Interactions with Secondary Plant Metabolites, Vol. 1. Academic Press, Inc, San Diego, CA.

    Google Scholar 

  • Goering, H. K. and Van Soest, P. J. 1970. Forage Fiber Analyses, Reagents, Procedures, And Some Applications. Agriculture Handbook 379. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Green, J. S. and Flinders, J. T. 1980a. Brachylagus idahoensis. Mamm. Species 125:1–4.

    Google Scholar 

  • Green, J. S. and Flinders, J. T. 1980b. Habitat and dietary relationships of the pygmy rabbits. J. Range Manag. 33:136–142.

    Google Scholar 

  • Harborne, J. B. 1991. The chemical basis of plant defense, pp. 45–60, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Holter, J. B., Tyler, G., and Walski, T. W. 1974. Nutrition of the snowshoe hare (Lepus americanus). Can. J. Zool. 52:1553–1555.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, A. E., James, L. F., and Spillett, J. 1976. The abortifacient and toxic effects of big sagebrush (Artemisia tridentata) and juniper (Juniperus osteosperma) on domestic sheep. J. Range Manag. 29:278–280.

    CAS  Google Scholar 

  • Katzner, T. E. and Parker, K. L. 1997a. Vegetative characteristics and size of home ranges used by pygmy rabbits (Brachylagus idahoensis) during winter. J. Mamm. 78:1063–1072.

    Article  Google Scholar 

  • Katzner, T. E., Parker, K. L., and Harlow, H. H. 1997b. Metabolism and thermal response in winter-acclimatized pygmy rabbits (Brachylagus idahoensis). J. Mamm. 78:1053–1062.

    Article  Google Scholar 

  • Kuijper, D. P. J., Van Wieren, S. E., and Bakker, J. P. 2004. Digestive strategies in two sympatrically occurring lagomorphs. J. Zool. Lond. 264:171–178.

    Google Scholar 

  • Lawler, I. R., Foley, W. J., Eschler, B. M., Pass, D. M., and Handasyde, K. 1998. Interspecific variation in Eucalyptus secondary metabolites determines food intake by folivorous marsupials. Oecologia 116:160–169.

    Article  Google Scholar 

  • Lawler, I. R., Stapley, J., Foley, W. J., and Eschler, B. 1999. Ecological example of conditioned food aversion in plant–herbivore interactions: effect of terpenes of Eucalyptus leaves on feeding by common ringtail and brushtail possums. J. Chem. Ecol. 25:401–415.

    Article  CAS  Google Scholar 

  • Marsh, K. J., Wallis, I. R., and Foley, W. J. 2003. The effect of inactivating tannins on the intake of Eucalyptus foliage by a specialist Eucalyptus folivore (Pseudocheirus peregrinus) and a generalist herbivore (Trichosurus vulpecula). Aust. J. Zool. 51:31–42.

    Article  CAS  Google Scholar 

  • Martin, J. S. and Martin, M. M. 1982. Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of size oak species. Oecologia 54:205–211.

    Article  Google Scholar 

  • McAllister, K. R. 1995. Washington state recovery plan for the pygmy rabbit. Wildlife Management Program, Washington Department of Fish and Wildlife, Olympia, Washington.

  • McArthur, C., Hagerman, A. E., and Robbins, C. T. 1991. Physiological strategies of mammalian herbivores against plant defenses, pp. 103–114, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL.

    Google Scholar 

  • McLean, S., Foley, W. J., Davies, N. W., Brandon, S., Duo, L., and Blackman, A. J. 1993. Metabolic fate of dietary terpenes from Eucalyptus radiate in common ringtail possum (Pseudocheirus peregrinus). J. Chem. Ecol. 19:1625–1643.

    Article  CAS  Google Scholar 

  • McNab, B. K. 1988. Complications inherent in scaling the basal rate of metabolism in mammals. Q. Rev. Biol. 63:25–54.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M. W. and Karasov, W. H. 1991. Chemical aspects of herbivory in arid and semiarid habitats, pp 167–186, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Moore, B. D. and Foley, W. J. 2000. A review of feeding and diet selection in koalas (Phascolarctos cinereus). Aust. J. Zool. 48:317–333.

    Article  Google Scholar 

  • Nagy, J. G., Steinhoff, H. W., and Ward, G. M. 1964. Effects of essential oils of sagebrush on deer rumen microbial function. J. Wildl. Manage. 28:785–791.

    CAS  Google Scholar 

  • Nagy, K. A., Shoemaker, V. H., and Costa, W. R. 1976. Water, electrolyte, and nitrogen budgets of jackrabbits (Lepus californicus) in the Mojave desert. Physiol. Zool. 49:351–363.

    CAS  Google Scholar 

  • National Research Council (1977) Nutrient requirements of rabbits. Subcommittee on rabbit nutrition, Committee on Animal Nutrition, Board of Agriculture and Renewable Resources, National Research Council. National Academy of Science, Washington, DC.

  • Ngugi, K. R., Powell, J., Hinds, F. C., and Olson, R. A. 1992. Range animal diet composition in southcentral Wyoming. J. Range Manag. 45:542–545.

    Google Scholar 

  • Nicholas, H. J. 1973. Terpenes, pp. 1254–1309, in L. P. Miller (ed.). Phytochemistry Vol. II. Organic Metabolites. Van Nostrand-Reinhold, New York.

    Google Scholar 

  • Palo, R. T., Bergström, R., and Danell, K. 1992. Digestibility, distribution of phenols and fiber at different twig diameters of birch in winter. Implication for browsers. Oikos 65:450–454.

    Google Scholar 

  • Rachlow, J. L., Sanchez, D. M., and Estes-Zump, W. A. 2005. Natal burrows and nests of free-ranging pygmy rabbits (Brachylagusidahoensis). West. N. Am. Nat. 65:136–139.

    Google Scholar 

  • Radwan, M. A., Crouch, G. L., Harrington, C. A., and Ellis, W. D. 1982. Terpenes of ponderosa pine and feeding preferences by pocket gophers. J. Chem. Ecol. 8:241–253.

    Article  CAS  Google Scholar 

  • Robbins, C. T. 1993. Wildlife Feeding and Nutrition. Academic Press, San Diego, CA.

    Google Scholar 

  • Rodgers, A. R., Williams, D., Sinclair, A. R. E., Sullivan, T. P., and Andersen, R. J. 1993. Does nursery production reduce antiherbivore defences of white spruce? Evidence from feeding experiments with snowshoe hares. Can. J. For. Res. 23:2358–2361.

    Google Scholar 

  • Rose, G. 1973. Energy metabolism of adult cottontail rabbits, Sylvilagus floridanus, in simulated field conditions. Am. Midl. Nat. 89:473–478.

    Article  Google Scholar 

  • Schwartz, C. C., Nagy, J. G., and Regelin, W. L. 1980. Juniper oil yield, terpenoid concentration, and antimicrobial effects on deer. J. Wildl. Manage. 44:107–113.

    CAS  Google Scholar 

  • Shafizadeh, F. and Melnikoff, A. B. 1970. Coumarins of Artemisia tridentata sp. Vaseyanoa. Phytochemistry 9:1311–1316.

    Article  CAS  Google Scholar 

  • Sinclair, A. R. E., Jogia, M. K., and Andersen, R. J. 1988. Camphor from juvenile white spruce as an antifeedant for showshoe hares. J. Chem. Ecol. 14:1505–1514.

    Article  CAS  Google Scholar 

  • Slade, L. M. and Robinson, D. W. 1970. Nitrogen metabolism in nonruminant herbivores. II. Comparative aspects of protein digestion. J. Anim. Sci. 30:761–763.

    PubMed  CAS  Google Scholar 

  • Sorensen, J. S. and Dearing, M. D. 2003. Elimination of plant toxins by herbivorous woodrats: revisiting an explanation for dietary specialization in mammalian herbivores. Oecologia 134:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, J. S., Turnbull, C. A., and Dearing, M. D. 2004. A specialist herbivore (Neotoma stephensi) absorbs fewer plant toxins than does a generalist (Neotoma albigula). Physiol. Biochem. Zool. 77:139–148.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, J. S., McLister, J. D., and Dearing, M. D. 2005. Plant secondary metabolites compromise the energy budgets of specialist and generalist mammalian herbivores. Ecology 86:125–139.

    Google Scholar 

  • Thines, N. J. 2006. Effects of enhanced UV-B radiation on the nutritional chemistry of forages and influences on mammalian herbivores. PhD dissertation, Washington State University, Pullman, WA.

  • Thines, N. J., Shipley, L. A., and Sayler, R. D. 2004. Effects of cattle grazing on ecology and habitat of Columbia Basin pygmy rabbits (Brachylagus idahoensis). Biol. Conserv. 119:525–534.

    Article  Google Scholar 

  • Uresk, D. W. 1978. Diets of the black-tailed hare in steppe vegetation. J. Range Manag. 31:439–442.

    Google Scholar 

  • Villalba, J. J. and Provenza, F. D. 2005. Foraging in chemically diverse environments: energy, protein, and alternative foods influence ingestion of plant secondary metabolites by lambs. J. Chem. Ecol. 31:123–138.

    Article  PubMed  CAS  Google Scholar 

  • Welch, B. L. and McArthur, E. D. 1981. Variation of monoterpenoid content among subspecies and accessions of Artemisia tridentata grown in a uniform garden. J. Range Manag. 34:380–384.

    CAS  Google Scholar 

  • Welch, B. L. and Pederson, J. C. 1981. In vitro digestibility among accessions of big sagebrush by wild mule deer and its relationship to monoterpenoid content. J. Range Manag. 34:497–500.

    CAS  Google Scholar 

  • White, S. M., Flinders, J. T., and Welch, B. T. 1982a. Preference of pygmy rabbits (Brachylagus idahoensis) for various populations of big sagebrush (Artemisia tridentata). J. Range Manag. 35:724–726.

    Google Scholar 

  • White, S. M., Welch, B. L., and Flinders, J. T. 1982b. Monoterpenoid content of pygmy rabbit stomach ingesta. J. Range Manag. 35:107–109.

    CAS  Google Scholar 

  • Zhang, X. and States, J. S. 1991. Selective herbivory of ponderosa pine by Abert squirrels: a re-examination of the role of terpenes. Biochem. Syst. Ecol. 19:111–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Jackson for help collecting data and caring for rabbits, G. K. Radamaker for raising sagebrush, and B. Davitt, R. Croteau, K. Ringer, and R. Goodwin for helping to analyze sagebrush for tannins and terpenes. J. Sorensen provided helpful comments on the manuscript. Support for this project came from Washington Department of Fish and Wildlife.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Shipley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shipley, L.A., Davila, T.B., Thines, N.J. et al. Nutritional Requirements and Diet Choices of the Pygmy Rabbit (Brachylagus idahoensis): A Sagebrush Specialist. J Chem Ecol 32, 2455–2474 (2006). https://doi.org/10.1007/s10886-006-9156-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9156-2

Keywords

Navigation