Skip to main content

Advertisement

Log in

Global dynamics of a Nonlocal Periodic Reaction–Diffusion Model of Chikungunya Disease

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of a nonlocal reaction–diffusion model of Chikungunya disease with periodic time delays. We establish two threshold type results on the global dynamics for the growth of mosquitoes and the disease transmission, respectively. Further, we obtain the global attractivity of a positive steady state for a simplified nonlocal and time-delayed system with constant coefficients. We also conduct numerical simulations for the Chikungunya transmission in Ceará, Brazil to investigate the effects of spatial heterogeneity on the disease transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used or analyzed during the current study are available from Zhimin Li upon reasonable request.

References

  1. Aguiar, B.S., Lorenz, C., Virginio, F., et al.: Potential risks of Zika and chikungunya outbreaks in Brazil: a modeling study. Int. J. Infect. Dis. 70, 20–29 (2018)

    Article  Google Scholar 

  2. Bai, Z., Peng, R., Zhao, X.-Q.: A reaction–diffusion malaria model with seasonality and incubation period. J. Math. Biol. 77, 201–228 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. CDC. https://www.cdc.gov/chikungunya/index.html

  4. Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin, Heidelberg (1985)

    Book  MATH  Google Scholar 

  5. Dumont, Y., Chiroleu, F.: Vector control for the Chikungunya disease. Math. Biosci. Eng. 7, 313–345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dumont, Y., Tchuenche, J.M.: Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. J. Math. Biol. 65, 809–854 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Figueiredo, L.T.M.: Large outbreaks of Chikungunya virus in Brazil reveal uncommon clinical features and fatalities. Rev. Soc. Bras. Med. Trop. 50, 583–584 (2017)

    Article  Google Scholar 

  8. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Longman Scientific and Technical, Harlow (1991)

    MATH  Google Scholar 

  9. Jin, Y., Zhao, X.-Q.: Spatial dynamics of a nonlocal periodic reaction–diffusion model with stage structure. SIAM J. Math. Anal. 40, 2496–2516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kakarla, S.G., Mopuri, R., Mutheneni, S.R., et al.: Temperature dependent transmission potential model for chikungunya in India. Sci. Total Environ. 647, 66–74 (2019)

    Article  Google Scholar 

  11. Khan, K., Bogoch, I., Brownstein, J.S., et al.: Assessing the origin of and potential for international spread of Chikungunya virus from the Caribbean. PLoS Curr. 6, 1–11 (2014)

    Google Scholar 

  12. Li, F., Zhao, X.-Q.: Global dynamics of a nonlocal periodic reaction–diffusion model of bluetongue disease. J. Differ. Equ. 272, 127–163 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liang, X., Zhang, L., Zhao, X.-Q.: Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J. Dynam. Differ. Equ. 31, 1247–1278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, X., Stechlinski, P.: Application of control strategies to a seasonal model of Chikungunya disease. Appl. Math. Model. 39, 3194–3220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, X., Wang, Y., Zhao, X.-Q.: Dynamics of a climate-based periodic Chikungunya model with incubation period. Appl. Math. Model. 80, 151–168 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, X., Wang, Y., Zhao, X.-Q.: Dynamics of a periodic Chikungunya model with temperatre and rainfall effects. Commun. Nonlinear Sci. Numer. Simulat. 90, 105409 (2020)

    Article  MATH  Google Scholar 

  17. Lou, Y., Zhao, X.-Q.: A theoretical approach to understanding population dynamics with seasonal developmental durations. J. Nonlinear Sci. 27, 573–603 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lou, Y., Zhao, X.-Q.: Periodic Ross–Macdonald model with diffusion and advection. Appl. Anal. 89, 1067–1089 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  20. Moore, C.G., Cline, B.L., Ruiztiben, E., et al.: Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am. J. Trop. Med. Hyg. 27, 1225–1231 (1978)

    Article  Google Scholar 

  21. Nunes, M.R.T., Faria, N.R., de Vasconcelos, J.M., et al.: Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med. 13, 1–11 (2015)

    Article  Google Scholar 

  22. Naveca, F.G., et al.: Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon. PLoS Neglect. Trop. D 13, e0007065 (2019)

    Article  Google Scholar 

  23. Nsoesie, E.O., Kraemer, M.U., et al.: Global distribution and environmental suitability for Chikungunya virus, 1952 to 2015. Euro. Surveill. 21, 7–18 (2016)

    Article  Google Scholar 

  24. Nussbaum, R.D.: Eigenvectors of nonlinear positive operators and the linear Krein–Rutman theorem. In: Fixed Point Theory, Lecture Notes in Math., vol. 886, pp. 309–331. Springer-Verlag (1981)

  25. Perkins, T.A., Metcalf, C.J.E., et al.: Estimating drivers of autochthonous transmission of Chikungunya virus in its invasion of the Americas. PLoS Curr. 7, 1–19 (2015)

    Google Scholar 

  26. Pialoux, G., Gauzere, B.A., et al.: Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319–327 (2007)

    Article  Google Scholar 

  27. Rezza, G., Nicoletti, L., Angelini, R., et al.: Infection with Chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 1840–1846 (2007)

    Article  Google Scholar 

  28. Sergon, K., Njuguna, C., Kalani, R., et al.: Seroprevalence of Chikungunya virus (CHIKV) infection on Lamu Island, Kenya. Am. J. Trop. Med. Hyg. 78(2008), 333–337 (2004)

    Google Scholar 

  29. Silva Junior, G.B., Pinto, J.R., Mota, R.M.S., et al.: Risk factors for death among patients with Chikungunya virus infection during the outbreak in northeast Brazil, 2016-2017. Trans. R. Soc. Trop. Med. Hyg. 113, 221–226 (2019)

    Article  Google Scholar 

  30. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence, RI (1995)

    MATH  Google Scholar 

  31. Thiberville, S.D., Moyen, N., Dupuis-Maguiraga, L., et al.: Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res. 99, 345–370 (2013)

    Article  Google Scholar 

  32. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Valdez, L.D., Sibona, G.J., Condat, C.A.: Impact of rainfall on Aedes aegypti populations. Ecol. Model. 385, 96–105 (2018)

    Article  Google Scholar 

  34. Wang, F.-B., Wu, R., Zhao, X.-Q.: A west Nile virus transmission model with periodic incubation periods. SIAM J. Appl. Dyn. Syst. 18, 1498–1535 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, W., Zhao, X.-Q.: A nonlocal and time-delayed reaction–diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weaver, S.C.: Evolutionary influences in arboviral disease. Curr. Top. Microbiol. Immunol. 299, 285–314 (2006)

    Google Scholar 

  38. Wu, R., Zhao, X.-Q.: A reaction–diffusion model of vector-borne disease with periodic delays. J. Nonlinear Sci. 29, 29–64 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao, X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dynam. Differ. Equ. 29, 67–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, X.-Q.: Dynamical Systems in Population Biology, 2nd edn. Springer, New York (2017)

    Book  MATH  Google Scholar 

Download references

Funding

The research is supported in part by the NSERC of Canada (RGPIN-2019-05648).

Author information

Authors and Affiliations

Authors

Contributions

Zhimin Li: Conceptualization, Methodology, Formal analysis, Software, Writing—original draft. Xiao-Qiang Zhao: Conceptualization, Methodology, Writing—review and editing.

Corresponding author

Correspondence to Xiao-Qiang Zhao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 4.10

From the analysis on the ultimate boundedness for system (2.4), we see that the set

$$\begin{aligned} \begin{aligned} H&: = \left\{ \phi \in U:\phi _1 (\theta _1,x) \leqslant \frac{{\Lambda _h }}{{\mu _h }},\phi _2 (\theta _2,x) \leqslant \frac{{\Lambda _h }}{{\mu _h }},\right. \\&\quad \phi _3 (0,x) \leqslant K_d,\phi _4 (\theta _3,x) \leqslant \frac{{k_d K_d }}{{\eta _w + \mu _E }}, \\&\quad \phi _5 (\theta _2,x) \leqslant \frac{{e^{ - \mu _L \tau _w } \eta _w \left( {\frac{{k_d K_d }}{{\eta _w + \mu _E }}} \right) }}{{\mu _m }},\phi _6 (\theta _1,x) \leqslant \frac{{e^{ - \mu _L \tau _w } \eta _w \left( {\frac{{k_d K_d }}{{\eta _w + \mu _E }}} \right) }}{{\mu _m }}, \\&\quad \left. \forall \theta _1 \in [ - \tau _h,0],\forall \theta _2 \in [ - \tau _m,0],\forall \theta _3 \in [ - \tau _w,0],x \in {{\bar{\Omega }}} \right\} \\ \end{aligned} \end{aligned}$$

is positively invariant for the solution semiflow Q(t) of system (4.8), and every forward orbit of system (4.8) from U enters H eventually. Therefore, it suffices to study the dynamics of system (4.8) on H. Note that cases (i) and (ii) are the straightforward consequences of Theorem 4.8 (i) and (ii) with \(\rho = 0\). It remains to prove (iii). When \({\mathscr {R}}_m >1\) and \({\mathscr {R}}_0>1\), it follows from Theorem 4.8 (iii) that system (4.8) is uniformly persistent, that is, there exists \(\xi > 0\) such that for any \(\phi = \left( {\phi _1,\phi _2,\phi _3,\phi _4,\phi _5,\phi _6 } \right) \in H\) with \(\phi _2(0,\cdot )\not \equiv 0\) or \(\phi _6(0,\cdot )\not \equiv 0\), the solution \(u=(t,x,\phi )\) satisfies

$$\begin{aligned} \mathop {\lim \inf }\limits _{t \rightarrow \infty } \mathop {\min }\limits _{x \in {{\overline{\Omega }}} } u_i (t,x,\phi ) \geqslant \xi ,(1 \leqslant i \leqslant 6). \end{aligned}$$
(6.1)

Let \(H_0: = \left\{ {\phi \in H:\phi _i (0,x) > 0,\forall x \in {{\bar{\Omega }}},i = 1,2,3,4,5,6} \right\} \!.\) Next, we show that the system (4.8) is globally attractive by the method of Lyapunov functionals. Set \(f(u) = u - 1 - \ln u,u \in (0,\infty )\). Clearly, \(f(u) \geqslant 0\) for all \(u \in (0,\infty )\) and \(\min _{0< u < + \infty } f(u) = f(1) = 0\). Define a continuous functional \(V:H_0 \rightarrow {\mathbb {R}}\):

$$\begin{aligned} V(\phi ) = \int \limits _\Omega {\left[ {V_1 (x,\phi ) + V_2 (x,\phi )} \right] } dx, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} V_1&= \frac{1}{{\beta _h I_{m*} }}f\left( {\frac{{\phi _1 (0,x)}}{{S_{h*} }}} \right) + \frac{{I_{h*} }}{{e^{ - \mu _h \tau _h } \beta _h I_{m*} S_{h*} }}\left( {f\left( {\frac{{\phi _2 (0,x)}}{{I_{h*} }}} \right) } \right) \\&\quad + \int \limits _{ - \tau _h }^0 {\int \limits _\Omega {\Gamma \left( {D( - s),x,y} \right) f\left( {\frac{{\phi _6 (s,y)\phi _1 (s,y)}}{{I_{m*} S_{h*} }}} \right) dyds} }, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} V_2&= \frac{1}{{k_d }}f\left( {\frac{{\phi _3 (0,x)}}{{E_{d*} }}} \right) + \frac{{E_{w*} }}{{k_d E_{d*} }}f\left( {\frac{{\phi _4 (0,x)}}{{E_{w*} }}} \right) + \frac{1}{{\eta _w }}f\left( {\frac{{\phi _4 (0,x)}}{{E_{w*} }}} \right) \\&\quad + \frac{{S_{m*} }}{{e^{ - \mu _L \tau _w } \eta _w E_{w*} }}f\left( {\frac{{\phi _5 (0,x)}}{{S_{m*} }}} \right) + \int \limits _{ - \tau _w }^0 {\int \limits _\Omega {\Gamma \left( {D( - s),x,y} \right) f\left( {\frac{{\phi _4 (s,y)}}{{E_{w*} }}} \right) dyds} } \\&\quad + \frac{1}{{\beta _m I_{h*} }}f\left( {\frac{{\phi _5 (0,x)}}{{S_{m*} }}} \right) + \frac{{I_{m*} }}{{e^{ - \mu _m \tau _m } \beta _m I_{h*} S_{m*} }}f\left( {\frac{{\phi _6 (0,x)}}{{I_{m*} }}} \right) \\&\quad + \int \limits _{ - \tau _m }^0 {\int \limits _\Omega {\Gamma \left( {D( - s),x,y} \right) f\left( {\frac{{\phi _2 (s,y)\phi _4 (s,y)}}{{I_{h*} S_{m*} }}} \right) dyds} }. \end{aligned} \end{aligned}$$

Next we fix \(\phi = \left( {\phi _1,\phi _2,\phi _3,\phi _4,\phi _5,\phi _6 } \right) \in H\) with \(\phi _2(0,\cdot )\not \equiv 0\) or \(\phi _6(0,\cdot )\not \equiv 0\). From (6.1), without loss of generality, we can assume that \(u_t (\phi ) \in H_0,\forall t \geqslant 0\). Let \(\omega (\phi )\) be the omega limit set for the semiflow Q(t). Then \(\omega (\phi ) \subset H_0\). Now we calculate the time derivative of \(V(u_t(\phi ))\) along the solution of system (4.8). It then follows that

$$\begin{aligned} \begin{aligned} \frac{{\partial V_1 }}{{\partial t}}&= \frac{1}{{\beta _h I_{m*} }}\left( {1 - \frac{{S_{h*} }}{{S_h }}} \right) \frac{1}{{S_{h*} }}\frac{{\partial S_h }}{{\partial t}} + \frac{{I_{h*} }}{{e^{ - \mu _h \tau _h } \beta _h I_{m*} S_{h*} }}\left( {1 - \frac{{I_{h*} }}{{I_h }}} \right) \frac{1}{{I_{h*} }}\frac{{\partial I_h }}{{\partial t}} \\&\quad + \left[ {f\left( {\frac{{I_m (t,x)S_h (t,x)}}{{I_{m*} S_{h*} }}} \right) - \int \limits _\Omega {\Gamma \left( {D\tau _h,x,y} \right) f\left( {\frac{{I_m (t - \tau _h,y)S_h (t - \tau _h,y)}}{{I_{m*} S_{h*} }}} \right) dy} } \right] \\&= - \frac{{\mu _h \left( {S_h - S_{h*} } \right) ^2 }}{{\beta _h I_{m*} S_{h*} S_h }} + \frac{1}{{I_{m*} S_{h*} }}\left( {1 - \frac{{S_{h*} }}{{S_h }}} \right) \left( {I_{m*} S_{h*} - I_m S_h } \right) \\&\quad + \frac{1}{{\beta _h I_{m*} }}\left( {1 - \frac{{S_{h*} }}{{S_h }}} \right) \frac{1}{{S_{h*} }}D_h \Delta S_h + \frac{{I_{h*} }}{{e^{ - \mu _h \tau _h } \beta _h I_{m*} S_{h*} }}\left( {1 - \frac{{I_{h*} }}{{I_h }}} \right) \frac{1}{{I_{h*} }}D_h \Delta I_h \\&\quad + \left( {\int \limits _\Omega {\Gamma \left( {D\tau _h,x,y} \right) \frac{{I_m (t - \tau _h,y)S_h (t - \tau _h,y)}}{{I_{m*} S_{h*} }}dy} - \frac{{I_h }}{{I_{h*} }}} \right) \\&\quad \left( {1 - \frac{{I_{h*} }}{{I_h }}} \right) + \frac{{S_h I_m }}{{S_{h*} I_{m*} }} - \ln \frac{{S_h I_m }}{{S_{h*} I_{m*} }} \\&\quad - \int \limits _\Omega {\Gamma \left( {D\tau _h,x,y} \right) \left( {\frac{{I_m (t - \tau _h,y)S_h (t - \tau _h,y)}}{{I_{m*} S_{h*} }} - \ln \frac{{I_m (t - \tau _h,y)S_h (t - \tau _h,y)}}{{I_{m*} S_{h*} }}} \right) dy} \\&= - \frac{{\mu _h \left( {S_h - S_{h*} } \right) ^2 }}{{\beta _h I_{m*} S_{h*} S_h }} + \frac{1}{{\beta _h I_{m*} }}\left( {1 - \frac{{S_{h*} }}{{S_h }}} \right) \frac{1}{{S_{h*} }}D_h \Delta S_h\\&\quad + \frac{{I_{h*} }}{{e^{ - \mu _h \tau _h } \beta _h I_{m*} S_{h*} }}\left( {1 - \frac{{I_{h*} }}{{I_h }}} \right) \frac{1}{{I_{h*} }}D_h \Delta I_h \\&\quad - f\left( {\frac{{S_{h*} }}{{S_h }}} \right) + \frac{{I_m }}{{I_{m*} }} - \frac{{I_h }}{{I_{h*} }} - \ln \frac{{I_{h*} }}{{I_h}} \\&\quad - \ln \frac{{I_m }}{{I_{m*} }} - \int \limits _\Omega {\Gamma \left( {D\tau _h,x,y} \right) f\left( {\frac{{I_m (t - \tau _h,y)S_h (t - \tau _h,y)I_{h*} }}{{I_{m*} S_{h*} I_h }}} \right) dy}, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \frac{{\partial V_2 }}{{\partial t}}= & {} \frac{1}{{k_d }}\left( {1 - \frac{{E_{d*} }}{{E_d }}} \right) \frac{1}{{E_{d*} }}\frac{{\partial E_d }}{{\partial t}} + \frac{{E_{w*} }}{{k_d E_{d*} }}\left( {1 - \frac{{E_{w*} }}{{E_w }}} \right) \frac{1}{{E_{w*} }}\frac{{\partial E_w }}{{\partial t}} \\{} & {} + \frac{1}{{\eta _w }}\left( {1 - \frac{{E_{w*} }}{{E_w }}} \right) \frac{1}{{E_{w*} }}\frac{{\partial E_w }}{{\partial t}} + \frac{{S_{m*} }}{{e^{ - \mu _L \tau _w } \eta _w E_{w*} }}\left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) \frac{1}{{S_{m*} }}\frac{{\partial S_m }}{{\partial t}} \\{} & {} + \left[ {f\left( {\frac{{E_w (t,x)}}{{E_{w*} }}} \right) - \int \limits _\Omega {\Gamma \left( {D\tau _w,x,y} \right) f\left( {\frac{{E_w (t - \tau _w,y)}}{{E_{w*} }}} \right) dy} } \right] \\{} & {} + \frac{1}{{\beta _m I_{h*} }}\left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) \frac{1}{{S_{m*} }}\frac{{\partial S_m }}{{\partial t}} + \frac{{I_{m*} }}{{e^{ - \mu _m \tau _m } \beta _m I_{h*} S_{m*} }}\left( {1 - \frac{{I_{m*} }}{{I_m }}} \right) \frac{1}{{I_{m*} }}\frac{{\partial I_m }}{{\partial t}} \\{} & {} + \left[ {f\left( {\frac{{I_h (t,x)S_m (t,x)}}{{I_{h*} S_{m*} }}} \right) } \right. \left. - \int \limits _\Omega {\Gamma \left( {D\tau _m,x,y} \right) f\left( {\frac{{I_h (t - \tau _m,y)S_m (t - \tau _m,y)}}{{I_{h*} S_{m*} }}} \right) dy} \right] \\= & {} - \frac{{\mu _E \left( {E_d - E_{d*} } \right) ^2 }}{{k_d E_{d*} E_d }} + \frac{1}{{E_{d*} }}\left( {1 - \frac{{E_{d*} }}{{E_d }}} \right) \left( {E_{d*} - E_d } \right) \\{} & {} + \frac{1}{{E_{d*} }}\left( {1 - \frac{{E_{w*} }}{{E_w }}} \right) \left( {E_d - \frac{{E_{d*}}}{{E_{w*} }}E_w } \right) \\{} & {} - \frac{{\left( {\eta _w + \mu _E } \right) \left( {E_w - E_{w*} } \right) ^2 }}{{\eta _w E_{w*} E_w }} + \frac{1}{{E_{w*} S_{m*} }}\left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) \left( {E_{w*} S_{m*} - E_w S_m } \right) \\{} & {} + \frac{{S_{m*} }}{{e^{ - \mu _L \tau _w } \eta _w E_{w*} }}\left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) \frac{1}{{S_{m*} }}D_m \Delta S_m + \frac{1}{{\beta _m I_{h*} }}\left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) \frac{1}{{S_{m*} }}D_m \Delta S_m \\{} & {} + \frac{{I_{m*} }}{{e^{ - \mu _m \tau _m } \beta _m I_{h*} S_{m*} }}\left( {1 - \frac{{I_{m*} }}{{I_m }}} \right) \frac{1}{{I_{m*} }}D_m \Delta I_m \\{} & {} + \left( {\int \limits _\Omega {\Gamma \left( {D\tau _w,x,y} \right) \frac{{E_w (t - \tau _w,y)}}{{E_{w*} }}dy} - \frac{{S_m }}{{S_{m*} }}} \right) \left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) \\{} & {} + \frac{{E_w }}{{E_{w*} }} - \ln \frac{{E_w }}{{E_{w*} }} - \int \limits _\Omega {\Gamma \left( {D\tau _w,x,y} \right) \left( {\frac{{E_w (t - \tau _w,y)}}{{E_{w*} }} - \ln \frac{{E_w (t - \tau _w,y)}}{{E_{w*} }}} \right) dy} \\{} & {} - \frac{{\mu _m \left( {S_m - S_{m*} } \right) ^2 }}{{\beta _m I_{h*} S_{m*} S_m }} + \frac{1}{{I_{h*} S_{m*} }}\left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) \left( {I_{h*} S_{m*} - I_h S_m } \right) \\{} & {} + \left( {\int \limits _\Omega {\Gamma \left( {D\tau _m,x,y} \right) \frac{{I_h (t - \tau _m,y)S_m (t - \tau _m,y)}}{{I_{h*} S_{m*} }}dy} - \frac{{I_m }}{{I_{m*} }}} \right) \\{} & {} \left( {1 - \frac{{I_{m*} }}{{I_m }}} \right) + \frac{{I_h S_m }}{{I_{h*} S_{m*} }} - \ln \frac{{I_h S_m }}{{I_{h*} S_{m*} }} \\{} & {} - \int \limits _\Omega {\Gamma \left( {D\tau _m,x,y} \right) \left( {\frac{{I_h (t - \tau _m,y)S_m (t - \tau _m,y)}}{{I_{h*} S_{m*} }}} \right. } \left. { - \ln \frac{{I_h (t - \tau _m,y)S_m (t - \tau _m,y)}}{{I_{h*} S_{m*} }}} \right) dy \\= & {} - \frac{{\mu _E \left( {E_d - E_{d*} } \right) ^2 }}{{k_d E_{d*} E_d }} + 5 - \frac{{E_{d*} }}{{E_d }} - \frac{{E_w }}{{E_{w*} }} - \frac{{E_{w*} E_d }}{{E_w E_{d*} }} - \frac{{\left( {\eta _w + \mu _E } \right) \left( {E_w - E_{w*} } \right) ^2 }}{{\eta _w E_{w*} E_w }} \\{} & {} + \frac{1}{{e^{ - \mu _L \tau _w } \eta _w E_{w*} }}\left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) D_m \Delta S_m + \frac{1}{{\beta _m I_{h*} S_{m*} }}\left( {1 - \frac{{S_{m*} }}{{S_m }}} \right) D_m \Delta S_m \\{} & {} + \frac{1}{{e^{ - \mu _m \tau _m } \beta _m I_{h*} S_{m*} }}\left( {1 - \frac{{I_{m*} }}{{I_m }}} \right) D_m \Delta I_m - \frac{{S_{m*} }}{{S_m }} + \frac{{E_w }}{{E_{w*} }} - \frac{{S_m }}{{S_{m*} }} - \ln \frac{{E_w }}{{E_{w*} }} - \ln \frac{{S_{m*}}}{{S_m }} \\{} & {} - \int \limits _\Omega {\Gamma \left( {D\tau _w,x,y} \right) f\left( {\frac{{E_w (t - \tau _w,y)S_{m*} }}{{E_{w*} S_m }}} \right) dy} \\{} & {} - \frac{{\mu _m \left( {S_m - S_{m*} } \right) ^2 }}{{\beta _m (A_{h*} + I_{h*} )S_{m*} S_m }} - \frac{{S_{m*} }}{{S_m }} + \frac{{I_h }}{{I_{h*} }} - \frac{{I_m }}{{I_{m*} }} - \ln \frac{{I_h S_m }}{{I_{h*} S_{m*} }} - \ln \frac{{I_{m*} }}{{I_m }} \\{} & {} - \int \limits _\Omega {\Gamma \left( {D\tau _m,x,y} \right) f\left( {\frac{{I_h (t - \tau _m,y)S_m (t - \tau _m,y)I_{m*} }}{{I_{h*} S_{m*} I_m }}} \right) } dy. \end{aligned}$$

Clearly, \(\ln v \leqslant \frac{v}{u} + \ln u - 1,\forall u,v > 0\), and hence, \(2 - u - \frac{v}{u} + \ln v \leqslant 0\) and \(2 - u - \frac{v}{u} + \ln v = 0\) if and only if \(u=v=1\). In particular, \(2 - u - \frac{1}{u} \leqslant 0\) and \(1 - v + \ln v \leqslant 0\). Note that \(\int _\Omega {\Delta u} dx = 0\) and \(\int _\Omega {\frac{{\Delta u}}{u}} dx = \int _\Omega {\frac{{\left\| {\nabla u} \right\| ^2 }}{{u^2 }}} dx\). Thus, we have

$$\begin{aligned} \frac{{dV\left( {u_t (\phi )} \right) }}{{dt}}= & {} - \int \limits _\Omega {\frac{{\mu _h \left( {S_h - S_{h*} } \right) ^2 }}{{\beta _h I_{m*} S_{h*} S_h }}dx} - \int \limits _\Omega {\frac{{\mu _E \left( {E_d - E_{d*} } \right) ^2 }}{{k_d E_{d*} E_d }}dx} \nonumber \\{} & {} - \int \limits _\Omega {\frac{{\left( {\eta _w + \mu _E } \right) \left( {E_w - E_{w*} } \right) ^2 }}{{\eta _w E_{w*} E_w }}dx} \nonumber \\{} & {} - \int \limits _\Omega {\frac{{\mu _m \left( {S_m - S_{m*} } \right) ^2 }}{{\beta _m (A_{h*} + I_{h*} )S_{m*} S_m }}dx} - \frac{{D_h }}{{\beta _h I_{m*} }}\int \limits _\Omega {\frac{{\left\| {\nabla S_h (t,x)} \right\| ^2 }}{{S_h^2 (t,x)}}dx} \nonumber \\{} & {} - \frac{{I_{h*} D_h }}{{e^{ - \mu _h \tau _h } \beta _h I_{m*} S_{h*} }}\int \limits _\Omega {\frac{{\left\| {\nabla I_h (t,x)} \right\| ^2 }}{{I_h^2 (t,x)}}dx} \nonumber \\{} & {} - \frac{{S_{m*} D_m }}{{e^{ - \mu _L \tau _w } \eta _w E_{w*} }}\int \limits _\Omega {\frac{{\left\| {\nabla S_m (t,x)} \right\| ^2 }}{{S_m^2 (t,x)}}dx} - \frac{{S_{m*} D_m }}{{\beta _m I_{h*} S_{m*} }}\int \limits _\Omega {\frac{{\left\| {\nabla S_m (t,x)} \right\| ^2 }}{{S_m^2 (t,x)}}dx} \nonumber \\{} & {} - \frac{{I_{m*} D_m }}{{e^{ - \mu _m \tau _m } \beta _m I_{h*} S_{m*} }}\int \limits _\Omega {\frac{{\left\| {\nabla I_m (t,x)} \right\| ^2 }}{{I_m^2 (t,x)}}dx} \nonumber \\{} & {} - \int \limits _\Omega {\int \limits _\Omega {\Gamma \left( {D\tau _h,x,y} \right) f\left( {\frac{{I_m (t - \tau _h,y)S_h (t - \tau _h,y)I_{h*} }}{{I_{m*} S_{h*} I_h }}} \right) dy} dx} \nonumber \\{} & {} - \int \limits _\Omega {\int \limits _\Omega {\Gamma \left( {D\tau _w,x,y} \right) f\left( {\frac{{E_w (t - \tau _w,y)S_{m*} }}{{E_{w*} S_m }}} \right) dy} dx} \nonumber \\{} & {} - \int \limits _\Omega {\int \limits _\Omega {\Gamma \left( {D\tau _m,x,y} \right) f\left( {\frac{{I_h (t - \tau _m,y)S_m (t - \tau _m,y)I_{m*} }}{{I_{h*} S_{m*} I_m }}} \right) } dydx} \nonumber \\{} & {} - \int \limits _\Omega {f\left( {\frac{{S_{h*} }}{{S_h }}} \right) dx} + \int \limits _\Omega {\left( {2 - \frac{{E_{d*} }}{{E_d }} - \frac{{E_{w*} E_d }}{{E_w E_{d*} }} - \ln \frac{{E_w }}{{E_{w*} }}} \right) dx} \nonumber \\{} & {} + \int \limits _\Omega {\left( {2 - \frac{{S_{m*} }}{{S_m }} - \frac{{S_m }}{{S_{m*} }}} \right) dx} \nonumber \\{} & {} - \int \limits _\Omega {\frac{{S_{m*} }}{{S_m }}dx} + \int \limits _\Omega {\left( {1 - \frac{{I_{m*} }}{{I_m }} - \ln \frac{{I_m }}{{I_{m*} }}} \right) dx} \nonumber \\\leqslant & {} - \int \limits _\Omega {\frac{{\mu _h \left( {S_h - S_{h*} } \right) ^2 }}{{\beta _h I_{m*} S_{h*} S_h }}dx} - \int \limits _\Omega {\frac{{\mu _E \left( {E_d - E_{d*} } \right) ^2 }}{{k_d E_{d*} E_d }}dx} \nonumber \\{} & {} - \int \limits _\Omega {\frac{{\left( {\eta _w + \mu _E } \right) \left( {E_w - E_{w*} } \right) ^2 }}{{\eta _w E_{w*} E_w }}dx} \nonumber \\{} & {} - \int \limits _\Omega {\frac{{\mu _m \left( {S_m - S_{m*} } \right) ^2 }}{{\beta _m (A_{h*} + I_{h*} )S_{m*} S_m }}dx} - \int \limits _\Omega \int \limits _\Omega \Gamma \left( {D\tau _h,x,y} \right) f\nonumber \\{} & {} \left( {\frac{{I_m (t - \tau _h,y)S_h (t - \tau _h,y)I_{h*} }}{{I_{m*} S_{h*} I_h }}} \right) dy dx \nonumber \\{} & {} - \int \limits _\Omega \int \limits _\Omega \Gamma \left( {D\tau _w,x,y} \right) f \left( {\frac{{E_w (t - \tau _w,y)S_{m*} }}{{E_{w*} S_m }}} \right) dy dx \nonumber \\{} & {} - \int \limits _\Omega {\int \limits _\Omega {\Gamma \left( {D\tau _m,x,y} \right) f\left( {\frac{{I_h (t - \tau _m,y)S_m (t - \tau _m,y)I_{m*} }}{{I_{h*} S_{m*} I_m }}} \right) } dydx} \nonumber \\{} & {} - \int \limits _\Omega {f\left( {\frac{{S_{h*} }}{{S_h }}} \right) dx} + \int \limits _\Omega {\left( {2 - \frac{{E_{d*} }}{{E_d }} - \frac{{E_{w*} E_d }}{{E_w E_{d*} }} - \ln \frac{{E_w }}{{E_{w*} }}} \right) dx} \nonumber \\{} & {} + \int \limits _\Omega {\left( {2 - \frac{{S_{m*} }}{{S_m }} - \frac{{S_m }}{{S_{m*} }}} \right) dx} \nonumber \\{} & {} - \int \limits _\Omega {\frac{{S_{m*} }}{{S_m }}dx} + \int \limits _\Omega {\left( {1 - \frac{{I_{m*} }}{{I_m }} - \ln \frac{{I_m }}{{I_{m*} }}} \right) dx} \nonumber \\&: =&U_\phi (t). \end{aligned}$$
(6.2)

Note that \({V\left( {u_t (\phi )} \right) }\) is nonincreasing and bounded below on \([0,\infty )\), so there is a real number \(L \geqslant 0\) such that \(\lim _{t \rightarrow \infty } V\left( {u_t (\phi )} \right) = L\). For any \(\psi \in \omega (\phi )\), there is a sequence \(t_n \rightarrow \infty \) such that \(\lim _{n \rightarrow \infty } u_{t_n } (\phi ) = \psi \) in \(H_0\). This shows that \(V(\psi ) = L,\forall \psi \in \omega (\phi )\). Since \(u_t (\psi ) \in \omega (\phi )\), it follows that \(V(u_t (\psi )) = L,\forall t \geqslant 0\), and hence, \(\frac{{dV(u_t (\psi ))}}{{dt}} = 0\). Replacing \(\phi \) in (6.2) with \(\psi \), we have \(0 = \frac{{dV(u_t (\psi ))}}{{dt}} \leqslant U_\psi (t) \leqslant 0\). This implies that \(U_\psi (t) = 0,\forall t \geqslant 0\). Combining with system (4.8), we obtain \(u_t (\psi ) = u^*,\forall t \geqslant \max \left\{ {\tau _h,\tau _m,\tau _w } \right\} \). Since \(\psi \in \omega (\phi )\) is arbitrary, there also holds \(u_t (\omega (\phi )) = u^*,\forall t \geqslant \max \left\{ {\tau _h,\tau _m,\tau _w } \right\} \). In view of the invariance of omega limit sets, it is easy to see that \(\omega (\phi ) = u_\tau (\omega (\phi )) = u^*,\tau = \max \left\{ {\tau _h,\tau _m,\tau _w } \right\} \), which implies that \(\lim _{t \rightarrow \infty } u_t (\phi ) = u^*\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, XQ. Global dynamics of a Nonlocal Periodic Reaction–Diffusion Model of Chikungunya Disease. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10267-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10267-1

Keywords

Mathematics Subject Classification

Navigation