Skip to main content
Log in

Abstract

In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability density space equipped with \(L^2\)-Wasserstein metric tensor, via the Wong–Zakai approximation. We begin our investigation by showing that the stochastic Euler–Lagrange equation, regardless it is deduced from either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various systems including the stochastic Schrödinger equation, Schrödinger equation with random dispersion, and Schrödinger bridge problem with common noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Availability of Data and Materials

This manuscript has no associated data.

References

  1. Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, San Diego (2001)

    Google Scholar 

  2. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  3. Albeverio, S., Yasue, K., Zambrini, J.-C.: Euclidean quantum mechanics: analytical approach. Ann. Inst. H. Poincaré Phys. Théor. 50(3), 259–308 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gangbo, W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61(1), 18–53 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bang, O., Christiansen, P.L., If, F., Rasmussen, K.Ø., Gaididei, Y.B.: Temperature effects in a nonlinear model of monolayer scheibe aggregates. Phys. Rev. E 49, 4627–4636 (1994)

    Article  Google Scholar 

  6. Bernstein, S.: Sur les liaisons entre les grandeurs aléatoires. Verh. des intern. Math. (1932)

  7. Bismut, J.-M.: Mécanique aléatoire. Lecture Notes in Mathematics, vol. 866. Springer-Verlag, Berlin-New York (1981). (With an English summary)

    MATH  Google Scholar 

  8. Brzeźniak, Z., Flandoli, F.: Almost sure approximation of Wong–Zakai type for stochastic partial differential equations. Stoch. Process. Appl. 55(2), 329–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardaliaguet, P., Delarue, F., Lasry, J.M., Lions, P.L.: The Master Equation and the Convergence Problem in Mean Field Games, Volume 201 of Annals of Mathematics Studies. Princeton University Press, Princeton (2019)

    MATH  Google Scholar 

  10. Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. II, volume 84 of Probability Theory and Stochastic Modelling. Mean field games with common noise and master equations. Springer, Cham (2018)

  11. Carmona, R., Delarue, F., Lacker, D.: Mean field games with common noise. Ann. Probab. 44(6), 3740–3803 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Georgiou, T.T., Pavon, M.: On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169(2), 671–691 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chow, S., Huang, W., Li, Y., Zhou, H.: Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203(3), 969–1008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chow, S., Li, W., Zhou, H.: A discrete Schrödinger equation via optimal transport on graphs. J. Funct. Anal. 276(8), 2440–2469 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chow, S., Li, W., Zhou, H.: Wasserstein Hamiltonian flows. J. Differ. Equ. 268(3), 1205–1219 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, K.L., Zambrini, J.-C.: Introduction to Random Time and Quantum Randomness. Monographs of the Portuguese Mathematical Society, vol. 1, new edition World Scientific Publishing Co. Inc, River Edge (2003)

    Book  MATH  Google Scholar 

  17. Conforti, C., Pavon, M.: Extremal flows on Wasserstein space. arXiv:1712.02257 (2017)

  18. Cui, J., Dieci, L., Zhou, H.: Time discretizations of Wasserstein–Hamiltonian flows. Math. Comput. 91(335), 1019–1075 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Cui, J., Hong, J., Liu, Z.: Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations. J. Differ. Equ. 263(7), 3687–3713 (2017)

    Article  MATH  Google Scholar 

  20. Cui, J., Liu, S., Zhou, H.: What is a stochastic Hamiltonian process on finite graph? An optimal transport answer. J. Differ. Equ. 305, 428–457 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cui, J., Liu, S., Zhou, H.: Optimal control for stochastic nonlinear Schrödinger equation on graph. arXiv:2209.05346, to appear in SIAM. J. Control Optim. (2022)

  22. Cui, J., Liu, S., Zhou, H.: Wasserstein Hamiltonian flow with common noise on graph. arXiv:2204.01185, to appear in SIAM. J. Appl. Math., (2022)

  23. Cui, J., Sun, L.: Stochastic logarithmic Schrödinger equations: energy regularized approach. arXiv:2102.12607, to appear in SIAM. J. Math. Anal. (2022)

  24. de Bouard, A., Debussche, A.: A stochastic nonlinear Schrödinger equation with multiplicative noise. Commun. Math. Phys. 205(1), 161–181 (1999)

    Article  MATH  Google Scholar 

  25. de Bouard, A., Debussche, A.: The nonlinear Schrödinger equation with white noise dispersion. J. Funct. Anal. 259(5), 1300–1321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Falkovich, G.E., Kolokolov, I., Lebedev, V., Turitsyn, S.K.: Statistics of soliton-bearing systems with additive noise. Phys. Rev. E 63, 025601 (2001)

    Article  Google Scholar 

  27. Fernique, X.: Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris Sér. A-B 270, A1698–A1699 (1970)

    MATH  Google Scholar 

  28. Furi, M.: Second order differential equations on manifolds and forced oscillations. In Topological methods in differential equations and inclusions (Montreal, PQ, 1994), volume 472 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 89–127. Kluwer Acad. Publ., Dordrecht (1995)

  29. Gangbo, W., Kim, H., Pacini, T.: Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems. Mem. Amer. Math. Soc. 211(993), vi+77 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Gomes, D.A., Saúde, J.: Mean field games models—a brief survey. Dyn. Games Appl. 4(2), 110–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. American Mathematical Society Colloquium Publications, Vol. XXXI. American Mathematical Society, Providence, R. I., (1974). Third printing of the revised edition of 1957

  32. Hsu, E.P.: Stochastic analysis on manifolds, volume 38 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2002)

  33. Huang, Q., Zambrini, J.-C.: From second-order differential geometry to stochastic geometric mechanics. arXiv:2201.03706 (2022)

  34. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1981)

    Google Scholar 

  35. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113, second edition Springer-Verlag, New York (1991)

    MATH  Google Scholar 

  36. Khesin, G., B., Misioł ek, Modin, K.: Geometric hydrodynamics and infinite-dimensional Newton’s equations. Bull. Amer. Math. Soc. (N.S.), 58(3), 377–442 (2021)

  37. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, volume 23 of Applications of Mathematics (New York). Springer, Berlin (1992)

    Book  Google Scholar 

  38. Konotop, V.V., Vázquez, L.: Nonlinear Random Waves. World Scientific Publishing Co. Inc, River Edge (1994)

    Book  MATH  Google Scholar 

  39. Krylov, N.V.: On the Itô–Wentzell formula for distribution-valued processes and related topics. Probab. Theory Related Fields 150(1–2), 295–319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lafferty, J.D.: The density manifold and configuration space quantization. Trans. Am. Math. Soc. 305(2), 699–741 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Léger, F., Li, W.: Hopf–Cole transformation via generalized Schrödinger bridge problem. J. Differ. Equ. 274, 788–827 (2021)

    Article  MATH  Google Scholar 

  42. Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. 34(4), 1533–1574 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lott, J.: Some geometric calculations on Wasserstein space. Commun. Math. Phys. 277(2), 423–437 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Madelung, E.: Quanten theorie in hydrodynamischer form. Zeitschrift für Physik, 40(3-4), 322–326, (1927). cited By 1026

  45. Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of \(h\)-path processes. Probab. Theory Related Fields 129(2), 245–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mikami, T.: Stochastic optimal transportation—stochastic control with fixed marginals. SpringerBriefs in Mathematics. Springer, Singapore (2021)

  47. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966)

    Article  Google Scholar 

  48. Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nelson, E.: Quantum Fluctuations. Princeton Series in Physics. Princeton University Press, Princeton (1985)

    Book  Google Scholar 

  50. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and its Applications (New York). Springer-Verlag, Berlin, second edition (2006)

  51. Schrödinger, E.: Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. H. Poincaré 2(4), 269–310 (1932)

    MathSciNet  MATH  Google Scholar 

  52. Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pages 333–359 (1972)

  53. Tetsuji, U., William, L.K.: Dynamics of optical pulses in randomly birefringent fibers. Physica D 55(1), 166–181 (1992)

    MATH  Google Scholar 

  54. Villani, C.: Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009)

  55. Wang, L., Hong, J., Scherer, R., Bai, F.: Dynamics and variational integrators of stochastic Hamiltonian systems. Int. J. Numer. Anal. Model. 6(4), 586–602 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Wang, X., Lu, K., Wang, B.: Wong–Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains. J. Differ. Equ. 264(1), 378–424 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36, 1560–1564 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wu, C., Zhang, J.: Viscosity solutions to parabolic master equations and Mckean–Vlasov sdes with closed-loop controls. arXiv:1805.02639

Download references

Acknowledgements

The authors would like to thank the anonymous referees and the associate editor for their comments and suggestions.

Funding

The research is partially supported by Georgia Tech Mathematics Application Portal (GT-MAP) and by research grants NSF DMS-1830225, and ONR N00014-21-1-2891, the start-up funds P0039016 and internal grants (P0041274,P0045336) from Hong Kong Polytechnic University, the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics and the grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (PolyU25302822 for ECS project).

Author information

Authors and Affiliations

Authors

Contributions

Authors are listed in alphabetical order of the surnames and have equal contributions.

Corresponding author

Correspondence to Jianbo Cui.

Ethics declarations

Conflict of interest

This work has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

Proof of Lemma 2.2

The local existence of (2.4) and (2.1) is ensured thanks to the local Lipschitz condition of f and \(\sigma \). To obtain a global solution, a priori bound on \(H_0(x,p)\) is needed. Denote the solutions of (2.1) and (2.4) with same initial condition \((x_0,p_0)\) by \((x_t^{\delta },p_t^{\delta }), \delta >0\) and \(x_t^{0},p_t^{0}\), respectively. Applying the chain rule to \(H_0(x_t^{\delta },p_t^{\delta })\) for (2.4) and (2.1), we get that

$$\begin{aligned} H_0(x_t^{\delta },p_t^{\delta })&=H_0(x_0,p_0)+\int _{0}^t \eta \nabla _p H_0(x_s^{\delta },p_s^{\delta }) \cdot \nabla _x \sigma (x_s) \dot{\xi }_{\delta }(s)ds\\ H_0(x_t,p_t)&=H_0(x_0,p_0)+\int _0^{\tau } \eta \nabla _p H_0(x_s,p_s) \cdot \nabla _x \sigma (x_s) dB_s\\&\quad +\frac{1}{2}\int _0^\tau \eta ^2 \nabla _{pp} H_0(x_s,p_s)\cdot (\nabla _x \sigma (x_s),\nabla \sigma (x_s))ds. \end{aligned}$$

By applying growth condition (2.3) and taking expectation on the second equation, we derive that

$$\begin{aligned} H_0(x_t^{\delta },p_t^{\delta })&\le (H_0(x_0,p_0)+\eta C_1T)\exp \Big (\int _0^tc_1\eta |\dot{\xi }_{\delta }(s)|ds\Big ),\\ {\mathbb {E}}\Big [H_0(x_t,p_t)\Big ]&\le \Big ({\mathbb {E}}\Big [H_0(x_0,p_0)\Big ]+\frac{\eta ^2}{2} C_1 T\Big ) \exp \Big (\int _0^{\tau }c_1 \frac{\eta ^2}{2} ds\Big ). \end{aligned}$$

The first inequality leads to \(H_0(x_t^{\delta },p_t^{\delta })<\infty \) since \(\dot{\xi }_{\delta }(s)=\frac{B_{t_{k+1}}-B_{t_k}}{\delta },\) if \(s\in [t_k,t_{k+1}].\) Furthermore, taking expectation on the first inequality, applying Fernique’s theorem (see, e.g. [27]) for Gaussian variable and independent increments of \(B_t\), we get that

$$\begin{aligned} {\mathbb {E}}\Big [H_0(x_t^{\delta },p_t^{\delta })\Big ]&\le C(T,\eta ,c_1)(2^{[\frac{t}{\delta }]}({\mathbb {E}}\Big [H_0(x_0,p_0)\Big ]+1), \end{aligned}$$

where [w] is the integer part of the real number w. The second inequality yield that \(H_0(x_t,p_t)<\infty , a.s,\) and the global existence of the strong solution of (2.4). Similarly, for \(p\ge 2\), we have that

$$\begin{aligned} {\mathbb {E}}\Big [H_0^p(x_t^{\delta },p_t^{\delta })\Big ]&\le C(T,\eta ,c_1,C_1, p)2^{p[\frac{t}{\delta }]}\Big ({\mathbb {E}}\Big [H_0^p(x_0,p_0)\Big ]+1\Big ),\\ {\mathbb {E}}\Big [H_0^p(x_t,p_t)\Big ]&\le C(T,\eta ,c_1,p)\Big ({\mathbb {E}}\Big [H_0^p(x_0,p_0)\Big ]+1\Big ). \end{aligned}$$

Furthermore, applying the above bounded moment estimate, we obtain that for \(s\le t\),

$$\begin{aligned} {\mathbb {E}}\Big [|x(t)-x(s)|^{2p}+|p(t)-p(s)|^{2p}\Big ]&\le C(T,\eta ,c_1,C_1,c_0,C_1,p,x_0,p_0) |t-s|^p\\ {\mathbb {E}}\Big [|x^{\delta }(t)-x^{\delta }(s)|^{2p}+|p(t)-p(s)|^{2p}\Big ]&\le C(T,\eta ,c_1,C_1,c_0,C_1,p,x_0,p_0) 2^{[\frac{t}{\delta }]} |t-s|^p. \end{aligned}$$

However, the above estimate of \(x^{\delta }\) is too rough and exponentially depending on \(\frac{1}{\delta }\). As a consequence, we can not expect any convergence result. A delicate estimate of \((x^{\delta },p^{\delta })\) is needed.

Assume that \(t\in [t_k,t_{k+1}],\) \(t_k=k\delta .\) Then by using the expansion of (2.1), we have that

$$\begin{aligned} H_0(x_t^{\delta },p_t^{\delta })&=H_0(x_0,p_0)-\sum _{j=0}^{k-1}\int _{t_j}^{t_{j+1}}\eta \nabla _p H_0(x_s^{\delta },p_s^{\delta })\cdot \nabla _x \sigma (x_s^{\delta }) d\xi _{\delta }(s)~ \\&\quad -\int _{t_k}^t \eta \nabla _p H_0(x_s^{\delta },p_s^{\delta })\cdot \nabla _x \sigma (x^{\delta }_s) d\xi _{\delta }(s)\\&=H_0(x_0,p_0)-\sum _{j=0}^{k-1}\int _{t_j}^{t_{j+1}}\eta \nabla _p H_0(x_{t_j}^{\delta },p_{t_j}^{\delta })\cdot \nabla _x \sigma (x^{\delta }_{t_j}) d\xi _{\delta }(s)\\&\quad -\int _{t_k}^t \eta \nabla _p H_0(x_{t_k}^{\delta },p_{t_k}^{\delta })\cdot \nabla _x \sigma (x^{\delta }_{t_k}) d\xi _{\delta }(s)\\&\quad -\sum _{j=0}^{k-1}\int _{t_j}^{t_{j+1}}\eta \Big (\int _{t_j}^s \nabla _{pp} H_0(x_{r}^{\delta },p_{r}^{\delta }) \cdot (\nabla _x \sigma (x^{\delta }_{r}),\\&\quad -\eta \nabla _x \sigma (x^{\delta }_r) \dot{\xi }_{\delta }(r)) dr \dot{\xi }_{\delta }(s) \\&\quad + \int _{t_j}^s\nabla _{pp} H_0(x_{r}^{\delta },p_{r}^{\delta }) \cdot ( \nabla _x \sigma (x^{\delta }_{r}), -\frac{1}{2}(p_r^{\delta })^{\top }d_xg^{-1}(x)p_r^{\delta }\\&\quad -\nabla _x f(x^{\delta }_s)) dr \dot{\xi }_{\delta }(s)\\&\quad + \int _{t_j}^s\nabla _{p} H_0(x_{r}^{\delta },p_{r}^{\delta }) \cdot \nabla _{xx} \sigma (x^{\delta }_{r})g^{-1}(x^{\delta }_r)p^{\delta }_r dr \dot{\xi }_{\delta }(s)\\&\quad +\int _{t_j}^s \nabla _{px} H_0(x_r^{\delta },p^{\delta })\cdot (\nabla _x \sigma (x_r^{\delta })\dot{\xi }_{\delta }(s), g^{-1}(x_r^{\delta })p^{\delta }_r)dr\Big )ds \\&\quad -\int _{t_k}^t\eta \Big (\int _{t_k}^s \nabla _{pp} H_0(x_{r}^{\delta },p_{r}^{\delta }) \cdot (\nabla _x \sigma (x^{\delta }_{r}),-\eta \nabla _x \sigma (x^{\delta }_r) \dot{\xi }_{\delta }(r)) dr \dot{\xi }_{\delta }(s) \\&\quad + \int _{t_k}^s\nabla _{pp} H_0(x_{r}^{\delta },p_{r}^{\delta }) \cdot (\nabla _x \sigma (x^{\delta }_{r}), -\frac{1}{2}(p_r^{\delta })^{\top }d_xg^{-1}(x^{\delta }_r)p^{\delta }_r\\&\quad -\nabla _x f(x^{\delta }_s)) dr \dot{\xi }_{\delta }(s)\\&\quad + \int _{t_k}^s\nabla _{p} H_0(x_{r}^{\delta },p_{r}^{\delta }) \cdot \nabla _{xx} \sigma (x^{\delta }_{r})g^{-1}(x^{\delta _r})p^{\delta }_r dr \dot{\xi }_{\delta }(s)\\&\quad + \int _{t_k}^{s} \nabla _{px} H_0(x_r^{\delta },p^{\delta })\cdot (\nabla _x \sigma (x_r^{\delta })\dot{\xi }_{\delta }(s)),g^{-1}(x_r^{\delta })p_r^{\delta })dr \Big )ds\\&=: H_0(x_0,p_0) +\sum _{j=0}^{k-1}I_{j}^1+I^1_k(t) \\&\quad +\sum _{j=0}^{k-1} (I_{j}^{21}+I_{j}^{22}+I_j^{23}+I_j^{24})+I_{k}^{21}(t)+I_{k}^{22}(t)+I_k^{23}(t)+I_k^{24}(t). \end{aligned}$$

Making use of the growth condition (2.3), we have that

$$\begin{aligned}&\sum _{j=0}^{k-1} (I_{j}^{21}+I_{j}^{22}+I_j^{23}+I_j^{24})+I_{k}^{21}(t)+I_{k}^{22}(t)+I_k^{23}(t)+I_k^{24}(t)\\&\quad \le \sum _{j=0}^{k-1}\int _{t_j}^{t_{j+1}}(C_1+c_1 H_0(x_s^{\delta },p_s^{\delta }))|\dot{\xi }_{\delta }(s)|^2\delta ds\\&\qquad +\sum _{j=0}^{k-1} \int _{t_j}^{t_{j+1}} (C_1+c_1 H_0(x_s^{\delta },p_s^{\delta }))|\dot{\xi }_{\delta }(s)| \delta ds\\&\qquad +\int _{t_k}^{t}(C_1+c_1 H_0(x_s^{\delta },p_s^{\delta }))|\dot{\xi }_{\delta }(s)|^2\delta ds + \int _{t_k}^{t} (C_1+c_1 H_0(x_s^{\delta },p_s^{\delta }))|\dot{\xi }_{\delta }(s)| \delta ds\\&\quad =\int _{0}^{t}(C_1+c_1 H_0(x_s^{\delta },p_s^{\delta })) |\dot{\xi }_{\delta }(s)|^2\delta ds + \int _{0}^{t} (C_1+c_1 H_0(x_s^{\delta },p_s^{\delta }))|\dot{\xi }_{\delta }(s)| \delta ds. \end{aligned}$$

By using the Gronwall–Bellman inequality, we obtain that

$$\begin{aligned} H_0(x_t^{\delta },p_t^{\delta })&\le \exp (\int _0^t c_1(|\dot{\xi }_{\delta }(s)|^2 +|\dot{\xi }_{\delta }(s)|)\delta ds)(H_0(x_0,p_0)+CT+|\sum _{j=0}^{k-1}I_{j}^1+I^1_k(t)|). \end{aligned}$$

For simplicity, assume that \(T=K\delta .\) Denote \([t]_{\delta }=t_k=k\delta \) if \(t\in [t_k,t_{k+1}).\) The definition of \(\xi _{\delta }(s)\) yields that \(s\in [t_j,t_{j+1}]\)

$$\begin{aligned} |\dot{\xi }_{\delta }(s)|^2\delta +|\dot{\xi }_{\delta }(s)|\delta =\left| \frac{B(t_{j+1})-B(t_j)}{\delta }|^2\delta +\right| B(t_{j+1})-B(t_j)|. \end{aligned}$$

Define a stopping time \(\tau _R=\inf \{t\in [0,T]| \int _0^{[t]_{\delta }}|\dot{\xi }_{\delta }|^2 \delta ds \ge R\}.\) The stopping time is well-defined since the quadratic variation process of Brownian motion is bounded in [0, T]. Then taking \(t\le \tau _{R}\) and using Hölder’s inequality, then it holds that

$$\begin{aligned} H_0(x_t^{\delta },p_t^{\delta })&\le \exp (\int _{[t]}^t c_1(|\dot{\xi }_{\delta }(s)|^2+|\dot{\xi }_{\delta }| ds)\exp (C(R+T))(H_0(x_0,p_0)\nonumber \\&\quad +CT+|\sum _{j=0}^{k-1}I_{j}^1+I^1_k(t)|)\nonumber \\&\le \exp \left( \int _{[t]}^t c_1(\frac{3}{2}|\dot{\xi }_{\delta }(s)|^2) ds\right) \exp (C(R+T)) H_0(x_0,p_0)\nonumber \\&\quad + \exp (C(R+T)) \exp \left( \int _{[t]}^t c_1\frac{3}{2}|\dot{\xi }_{\delta }(s)|^2 ds\right) \left| \int _0^{[t]}\right. \nonumber \\&\quad \left. -\eta \nabla _p H_0(x_{[s]_\delta }^{\delta },p_{[s]_{\delta }}^{\delta })\cdot \nabla _x \sigma (x_{[s]_{\delta }}) dB(s)\right| \nonumber \\&\quad \displaystyle + \exp (C(R+T)) \exp (\int _{[t]}^t (c_1\frac{3}{2}|\dot{\xi }_{\delta }(s)|^2 ds) \left| \int _{[t]}^t\right. \nonumber \\&\quad \displaystyle \left. -\eta \nabla _p H_0(x_{[s]_\delta }^{\delta },p_{[s]_{\delta }}^{\delta })\cdot \nabla _x \sigma (x_{[s]_{\delta }}) \dot{\xi }_{\delta }(s) ds\right| . \end{aligned}$$
(A.1)

Similarly, one could obtain a analogous estimate of (A.1) with the integral over \([t_{k-1},t_{k}]\), where \(t_k\), \(k\le K\), \(t_K\le \tau _R.\) By the Cauchy inequality and taking expectation on both sides of (A.1), applying the Burkholder–Davis–Gundy inequality (see e.g, [35]) and using the independent increments of Brownian motion, we get

$$\begin{aligned}&{\mathbb {E}}[H_0^2(x_{t_k}^{\delta },p_{t_k}^{\delta })] \\&\quad \le 3{\mathbb {E}}\Big [\exp (\int _{t_{k-1}}^{t_k} (3c_1|\dot{\xi }_{\delta }(s)|^2 ds)\Big ]\exp (2C(R+T)) {\mathbb {E}}\Big [H_0^2(x_0,p_0)\Big ]\\&\qquad + 3\exp (2C(R+T)) {\mathbb {E}}\Big [\exp \Big (\int _{t_{k-1}}^{t_k} 3c_1|\dot{\xi }_{\delta }(s)|^2 ds\Big )\Big ] {\mathbb {E}}\Big [\Big |\int _0^{t_{k-1}}\\&\qquad -\eta \nabla _p H_0(x_{[s]_\delta }^{\delta },p_{[s]_{\delta }}^{\delta })\cdot \nabla _x \sigma (x_{[s]_{\delta }}) dB(s)\Big |^2\Big ]\\&\qquad + 3\exp (2C(R+T)) {\mathbb {E}}\Big [\exp \Big (\int _{t_{k-1}}^{t_k} 3c_1|\dot{\xi }_{\delta }(s)|^2 ds\Big ) |B(t_{k})-B(t_{k-1})|^2 \\&\quad \times \big |\eta \nabla _p H_0(x_{t_{k-1}}^{\delta },p_{t_{k-1}}^{\delta })\cdot \nabla _x \sigma (x_{t_{k-1}}) \big |^2\Big ]\\&\quad \le 3{\mathbb {E}}\Big [\exp (\int _{t_{k-1}}^{t_k} (3c_1|\dot{\xi }_{\delta }(s)|^2 ds)\Big ]\exp (2C(R+T)) {\mathbb {E}}\Big [H_0^2(x_0,p_0)\Big ]\\&\qquad + 3\exp (2C(R+T)) {\mathbb {E}}\Big [\exp \Big (\int _{t_{k-1}}^{t_k} 3c_1|\dot{\xi }_{\delta }(s)|^2 ds\Big )\Big ]\\&\qquad {\mathbb {E}}\Big [\int _0^{t_{k-1}}(C_1+c_1 H_0(x_{[s]_{\delta }}^{\delta },p_{[s]_{\delta }}^{\delta }))^2 ds\Big ]\\&\qquad + 3\exp (2C(R+T)) {\mathbb {E}}\Big [\exp \Big (\int _{t_{k-1}}^{t_k} 3c_1|\dot{\xi }_{\delta }(s)|^2 ds\Big ) |B(t_{k})-B(t_{k-1})|^2\Big ] \\&\quad \times {\mathbb {E}}\Big [(C_1+c_1 H_0^2(x_{t_{k-1}}^{\delta },p_{t_{k-1}}^{\delta }))\Big ]. \end{aligned}$$

Applying the Fernique theorem and choosing sufficient small \(\delta \) such that \(12c_1\delta <1,\) then we have that

$$\begin{aligned}&{\mathbb {E}}\Big [\exp \Big (\int _{t_{k-1}}^{t_k} 3c_1|\dot{\xi }_{\delta }(s)|^2 ds\Big )\Big ]\le C,\\&{\mathbb {E}}\Big [\exp (\int _{t_{k-1}}^{t_k} 3c_1|\dot{\xi }_{\delta }(s)|^2 ds\Big ) |B(t_{k})-B(t_{k-1})|^2\Big ]\\&\quad \le \sqrt{{\mathbb {E}}\Big [\exp \Big (\int _{t_{k-1}}^{t_k} 6c_1|\dot{\xi }_{\delta }(s)|^2 ds\Big )\Big ]}\sqrt{{\mathbb {E}}\Big [|B(t_{k})-B(t_{k-1})|^4\Big ]} \le C\delta . \end{aligned}$$

The above estimation gives

$$\begin{aligned} {\mathbb {E}}[H_0^2(x_{t_k}^{\delta },p_{t_k}^{\delta })]&\le 3 \exp (2C(R+T))C {\mathbb {E}}[H_0^2(x_0,p_0)]\\&\quad +6 \exp (2C(R+T))C\int _{0}^{t_{k-1}}{\mathbb {E}}\Big [(C_1^2+c_1^2H_0^2(x_{[s]_{\delta }}^{\delta },p_{[s]_{\delta }}^{\delta }))\Big ]ds\\&\quad +6 \exp (2C(R+T)C\delta {\mathbb {E}}\Big [C_1^2+c_1^2H_0^2(x_{t_{k-1}}^{\delta },p_{t_{k-1}}^{\delta })\Big ]. \end{aligned}$$

Then the Grownall’s inequality yield that

$$\begin{aligned} {\mathbb {E}}[H_0^2(x_{t_k}^{\delta },p_{t_k}^{\delta })]&\le \exp (6TCc_1^2\exp (2C(R+T))) \\&\quad \times \Big (3\exp (2C(R+T))C{\mathbb {E}}[H_0^2(x_0,p_0)] + 6C_1^2T C \exp (2C(R+T))\Big ) \end{aligned}$$

Combining the above estimates with (A.1) and the Burkholder–Davis–Gundy inequality, we conclude that

$$\begin{aligned}&\sup _{t\in [0,\tau ^R)}{\mathbb {E}}[H_0^2(x_{t}^{\delta },p_{t}^{\delta })] \le (\exp (6TCc_1^2\exp (2C(R+T)))+C) \\&\quad \times \Big (3\exp (2C(R+T))C{\mathbb {E}}[H_0^2(x_0,p_0)] + 6C_1^2T C \exp (2C(R+T))\Big )\\&\quad =:C_R. \end{aligned}$$

Similarly, by choosing sufficient small \(\delta \), we have that for \(t\in [0,\tau ^R)\),

$$\begin{aligned} {\mathbb {E}}[H_0^{p}(x_{t}^{\delta },p_{t}^{\delta })] \le C_{R,p}<\infty . \end{aligned}$$

As a consequence, by again using (A.1), we obtain that

$$\begin{aligned} {\mathbb {E}}\Big [\sup _{t\in [0,\tau ^R)}H_0^p(x_{t}^{\delta },p_{t}^{\delta })\Big ]&\le C_{R,p}<\infty . \end{aligned}$$

Next we show the convergence in probability of the solution of (2.1) to that of (2.4). Introduce another stopping time \(\tau _{R_1}:=\inf \{t\in [0,T]| |x_t|+|p_t|\ge R_1, |x^{\delta }_{[t]_{\delta }}|+|p^{\delta }_{[t]_{\delta }}|\ge R_1 \}.\) Let \(t\in [0,\tau _{R}\wedge \tau _{R_1}).\) By using the polynomial growth condition of \(f,\sigma \) and the fact that \(\sigma \) is independent of p, we obtain that

$$\begin{aligned}&|x^{\delta }(t)-x(t)|^2\\&\quad = |x^\delta (0)-x(0)|^2 +\int _{0}^t2\langle x^{\delta }(s)-x(s),g^{-1}(x^{\delta }(s)) p^{\delta }(s)-g^{-1}(x(s))p(s)\rangle ds\\&\quad \le |x^{\delta }(0)-x(0)|^2+\int _0^t C_g(1+|p(s)|)(|x^{\delta }(s)-x(s)|^2+|p^{\delta }(s)-p(s)|^2) ds,\\&|p^{\delta }(t)-p(t)|^2\\&\quad = \int _0^t \langle - (p^{\delta }(s))^{\top } d_x g^{-1}(x^\delta (s)) p^{\delta }(s) + p(s)^{\top } d_x g^{-1}(x(s)) p(s) ,p^{\delta }(s)-p(s)\rangle ds \\&\qquad +\int _0^t2\langle -\nabla _x f(x^{\delta }(s))+\nabla _x f(x(s)),p^{\delta }(s)-p(s)\rangle ds\\&\qquad -\int _0^t2\eta \langle p^{\delta }(s)-p(s), \nabla _x \sigma (x^{\delta }(s)) d\xi _{\delta }(s)-\nabla _x\sigma (x(s))dB_t\rangle \\&\quad \le C_g \int _0^t (1+|x^{\delta }(s)|)(|p^{\delta }(s)|^2+|p(s)|^2)(|p^{\delta }(s)-p(s)|^2+|x^{\delta }(s)-x(s)|^2) ds\\&\qquad + C_f \int _0^t (1+|x(s)|^{p_f}+|x^{\delta }|^{p_f})(|p^{\delta }(s)-p(s)|^2+|x^{\delta }(s)-x(s)|^2)ds\\&\qquad -\int _0^t2\eta \langle p^{\delta }(s)-p(s), \nabla _x \sigma (x^{\delta }(s)) d\xi _{\delta }(s)-\nabla _x\sigma (x(s))dB_s\rangle , \end{aligned}$$

where \(C_g\) and \(C_f\) are constants depending on f and g. To deal with the last term, we split it as follows,

$$\begin{aligned}&\int _0^t2\eta \langle p^{\delta }(s)-p(s), \nabla _x \sigma (x^{\delta }(s)) d\xi _{\delta }(s)-\nabla _x\sigma (x(s))dB_s\rangle \\&\quad =2\eta \int _0^t \langle p^{\delta }([s]_{\delta })-p([s]_{\delta }), \nabla _x \sigma (x^{\delta }(s)) d\xi _{\delta }(s)-\nabla _x\sigma (x(s))dB_s\rangle \\&\qquad +2\eta \int _0^t \langle p^{\delta }(s)-p(s)-p^{\delta }([s]_{\delta })+p([s]_{\delta }), \nabla _x \sigma (x^{\delta }(s)) d\xi _{\delta }(s)-\nabla _x\sigma (x(s))dB_s\rangle \\&\quad =2\eta \int _0^t \langle p^{\delta }([s]_{\delta })-p([s]_{\delta }), \nabla _x \sigma (x^{\delta }([s]_{\delta })) d\xi _{\delta }([s]_{\delta })-\nabla _x\sigma (x([s]_{\delta }))dB_s\rangle \\&\qquad +2\eta \int _0^t \langle p^{\delta }([s]_{\delta })-p([s]_{\delta }), (\nabla _x \sigma (x^{\delta }(s))- \nabla _x \sigma (x^{\delta }([s]_{\delta })))d\xi _{\delta }(s)\\&\qquad -(\nabla _x\sigma (x(s))-\nabla _x\sigma (x([s]_{\delta })))dB_s\rangle \\&\qquad + 2\eta \int _0^t \langle p^{\delta }(s)-p(s)-p^{\delta }([s]_{\delta })+p([s]_{\delta }), \\&\qquad \nabla _x \sigma (x^{\delta }([s]_{\delta })) d\xi _{\delta }(s)-\nabla _x\sigma (x([s]_{\delta })dB_s\rangle \\&\qquad + 2\eta \int _0^t \langle p^{\delta }(s)-p(s)-p^{\delta }([s]_{\delta })+p([s]_{\delta }), (\nabla _x \sigma (x^{\delta }(s)-\nabla _x \sigma (x^{\delta }([s]_{\delta })) ) d\xi _{\delta }(s)\\&\qquad -(\nabla _x\sigma (x(s)-\nabla _x\sigma (x([s]_{\delta }))dB_s\rangle \\&\quad =: II^1+II^2+II^3+II^4. \end{aligned}$$

Taking expectation on \(II^1\), using the property of the discrete martingale, the a prior estimates for \(H_0(x_t,p_t)\) and \(H_0(x_t^{\delta },p_t^{\delta })\) and Hölder’s inequality, we have that

$$\begin{aligned} {\mathbb {E}}[II^1]&=0,\\ {\mathbb {E}}[II^2]&\le 2\eta \int _0^t {\mathbb {E}}\Big [\langle p^{\delta }([s]_{\delta })-p([s]_{\delta }), \\&\quad \int _{[s]_{\delta }}^{s} (\nabla _{xx} \sigma (x^{\delta }(r))\cdot (g^{-1}(x^{\delta }(r))p^{\delta }(r)) dr d\xi _{\delta }(s)\rangle \Big ]\\&\quad -2\eta \int _0^t {\mathbb {E}}\Big [\langle p^{\delta }([s]_{\delta })-p([s]_{\delta }),\\&\quad \int _{[s]_{\delta }}^{s} (\nabla _{xx} \sigma (x(r))\cdot (g^{-1}(x^{\delta }(r)p^{\delta }(r)) dr dB_s\rangle \Big ]\\&\le C(R_1) \delta ^{\frac{1}{2}}. \end{aligned}$$

Similar arguments lead to \({\mathbb {E}}[II^4]\le C(R_1)\delta ^{\frac{1}{2}}.\) For the term \(II^3\), applying the continuity estimate of \(x_t\) and \(x^{\delta }_t,\) as well as independent increments of the Brownian motion, we get

$$\begin{aligned}&{\mathbb {E}}[II^3]\\&\le C(R_1)\delta ^{\frac{1}{2}} +2\eta ^2{\mathbb {E}}\Big [\int _0^{[t]_{\delta }} \langle \int _{[s]_{\delta }}^s \nabla _x \sigma (x_{[r]_{\delta }}^{\delta }) d\xi _{\delta }(r) -\int _{[s]_{\delta }}^s \nabla _x \sigma (x_{[r]_{\delta }}) dB_r, \\&\quad \nabla _x \sigma (x^{\delta }([s]_{\delta })) d\xi _{\delta }(s)-\nabla _x\sigma (x([s]_{\delta })dB_s\rangle \Big ]\\&\le C(R_1)\delta ^{\frac{1}{2}} +2\eta ^2{\mathbb {E}}\Big [\int _0^{[t]_{\delta }} |\nabla _x \sigma (x^{\delta }_{[s]_{\delta }})|^2\frac{s-[s]_{\delta }}{\delta ^2}(B([s]_{\delta }+\delta )-B([s]_{\delta }))^2ds\Big ]\\&\quad -2\eta ^2{\mathbb {E}}\Big [\int _0^{[t]_{\delta }} \langle \nabla _x \sigma (x^{\delta }_{[s]_{\delta }}), \nabla _x \sigma (x_{[s]_{\delta }})\rangle \frac{s-[s]_{\delta }}{\delta ^2}(B([s]_{\delta }+\delta )-B([s]_{\delta }))^2ds \Big ]\\&\quad -2\eta ^2 {\mathbb {E}}\Big [\int _0^{[t]_{\delta }} \langle \nabla _x \sigma (x^{\delta }_{[s]_{\delta }}), \nabla _x \sigma (x_{[s]_{\delta }})\rangle \frac{ B([s]_{\delta }+\delta )-B([s]_{\delta })}{\delta } (B(s)-B([s]_{\delta }))ds\Big ]\\&\quad +2\eta ^2 {\mathbb {E}}\Big [\int _0^{[t]_{\delta }} \langle \nabla _x \sigma (x_{[s]_{\delta }}), \nabla _x \sigma (x_{[s]_{\delta }})\rangle \frac{ B([s]_{\delta }+\delta )-B([s]_{\delta })}{\delta } (B(s)-B([s]_{\delta }))ds\Big ]\\&\le C(R_1)\delta ^{\frac{1}{2}}+2\eta ^2 \int _0^{[t]_{\delta }}{\mathbb {E}}\Big [|\nabla _x \sigma (x_{[s]_{\delta }}^{\delta })-\nabla _x \sigma (x_{[s]_{\delta }})|^2\Big ]ds\\&\le C(R_1)\delta ^{\frac{1}{2}}+ \int _0^{t}C(R_1){\mathbb {E}}\Big [| x_s^{\delta }-x_s|^2\Big ]ds, \end{aligned}$$

where \(C(R_1)>0\) is monotone with \(R_1.\) Combining the above estimates, we achieve that

$$\begin{aligned} {\mathbb {E}}[|x^{\delta }(t)-x(t)|^2]&\le \int _0^t C_g(1+C_{R_1}) ({\mathbb {E}}[|x^{\delta }(s)-x(s)|^2]\\&\quad + {\mathbb {E}}[|p^{\delta }(s)-p(s)|^2])ds \\ {\mathbb {E}}[|p^{\delta }(t)-p(t)|^2]&\le \int _0^t (C_g+C_f)(1+C_{R_1})({\mathbb {E}}[|x^{\delta }(s)-x(s)|^2]\\&\quad + {\mathbb {E}}[|p^{\delta }(s)-p(s)|^2])ds +C(R_1)\delta ^{\frac{1}{2}}. \end{aligned}$$

Then the Gronwall’s inequality implies that

$$\begin{aligned} {\mathbb {E}}[|x^{\delta }(t)-x(t)|^2]+{\mathbb {E}}[|p^{\delta }(t)-p(t)|^2]&\le \exp (2(C_g+C_f)(1+C_{R_1})T)C(R_1)\delta ^{\frac{1}{2}}. \end{aligned}$$
(A.2)

By making use of (A.2) and Chebshev’s inequality, we conclude that

$$\begin{aligned}&{\mathbb {P}}(|x^{\delta }(t)-x(t)|+|p^{\delta }(t)-x(t)|\ge \epsilon )\\&\quad \le {\mathbb {P}}(\{|x^{\delta }(t)-x(t)|+|p^{\delta }(t)-x(t)|\ge \epsilon \}\cap \{t<\tau _R\}\cap \{t<\tau _{R_1}\}) \\&\qquad + {\mathbb {P}}(\{|x^{\delta }(t)-x(t)|+|p^{\delta }(t)-x(t)|\ge \epsilon \}\cap \{t\ge \tau _R\})\\&\qquad +{\mathbb {P}}(\{|x^{\delta }(t)-x(t)|+|p^{\delta }(t)-x(t)|\ge \epsilon \}\cap \{t< \tau _R\}\cap \{t\ge \tau _{R_1}\})\\&\qquad \le 2\frac{{\mathbb {E}}\Big [|x^{\delta }(t)-x(t)|^2+|p^{\delta }(t)-x(t)|^2\Big ]}{\epsilon ^2} \\&\qquad + \frac{{\mathbb {E}}\Big [\int _0^{t}|\dot{\xi }_{\delta }(s)|^2\delta ds\Big ]}{R}+\frac{{\mathbb {E}}\Big [|x(t)|+|p(t)|+|x^{\delta }(t)|+|p^{\delta }(t)|\Big ]}{R_1}\\&\quad \le \frac{2}{\epsilon ^2}\exp (2(C_g+C_f)(1+C_{R_1})T)C(R_1)\delta ^{\frac{1}{2}}+ \frac{C}{R}+C\frac{1+C_R}{R_1}. \end{aligned}$$

Here, \({\mathbb {E}}[|x(t)|+|p(t)|+|x^\delta (t)|+|p^\delta (t)|]<C(1+C_R)\) is ensured by \({\mathbb {E}}[\sup \limits _{t\in [0,\tau ^R)} H_0^{2}(x_{t}^{\delta },p_{t}^{\delta })] \le C_{R}.\) Taking limit on \(\delta \rightarrow 0,\) \(R_1\rightarrow \infty \), and \(R \rightarrow \infty \) leads to

$$\begin{aligned} \lim _{\delta \rightarrow 0}{\mathbb {P}}(|x^{\delta }(t)-x(t)|+|p^{\delta }(t)-p(t)|> \epsilon )=0. \end{aligned}$$

Similarly, one could utilize the properties of martingale and obtain the following estimate, for large enough \(q>0,\)

$$\begin{aligned} {\mathbb {E}}[|x^{\delta }(t)-x(t)|^{q}]+{\mathbb {E}}[|p^{\delta }(t)-p(t)|^q]&\le C_q \exp (C_q(C_g+C_f)(1+C_{R_1})T)C(R_1)\delta ^{\frac{q}{2} -1}. \end{aligned}$$

This implies that for large enough \(q>4\),

$$\begin{aligned}&{\mathbb {E}}\Big [\sup _{k\le K}\sup _{t\in [t_{k-1},t_{k}]}|x^{\delta }(t)-x(t)|^{q}\Big ]+{\mathbb {E}}\Big [\sup _{k\le K}\sup _{t\in [t_{k-1},t_{k}]}|p^{\delta }(t)-p(t)|^q\Big ]\\&\quad \le \sum _{k=0}^{K-1}{\mathbb {E}}\Big [\sup _{t\in [t_{k-1},t_{k}]}|x^{\delta }(t)-x(t)|^{q}\Big ]+{\mathbb {E}}\Big [\sup _{t\in [t_{k-1},t_{k}]}|p^{\delta }(t)-p(t)|^q\Big ]\\&\quad \le C_q K \exp (C_q(C_g+C_f)(1+C_{R_1})T)C(R_1)\delta ^{\frac{q}{2} -1}\\&\quad \le C_q \exp (C_q(C_g+C_f)(1+C_{R_1})T)C(R_1)\delta ^{\frac{q}{2} -2}. \end{aligned}$$

Combining the above estimate and applying the Chebshev’s inequality, we further obtain

$$\begin{aligned} \lim _{\delta \rightarrow 0}{\mathbb {P}}\left( \sup _{t\in [0,T]}|x^{\delta }(t)-x(t)|+\sup _{t\in [0,T]}|p^{\delta }(t)-p(t)|> \epsilon \right) =0. \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Liu, S. & Zhou, H. Stochastic Wasserstein Hamiltonian Flows. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10264-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10264-4

Keywords

Mathematics Subject Classification

Navigation