Skip to main content
Log in

Traveling Waves in Epidemic Models: Non-monotone Diffusive Systems with Non-monotone Incidence Rates

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the existence and nonexistence of traveling waves of diffusive epidemic models with general incidence rates. The model systems are non-monotone because of the intrinsic predator–prey interaction between the susceptible and infective compartments in epidemic systems. Moreover, the incidence rate may not be monotone in the infected population because social behaviors and collective activities may change in response to the prevalence of disease. To find positive traveling solutions of the non-monotone system with a non-monotone incidence function, we will construct a suitable convex set in a weighted function space, and then apply Schauder fixed point theorem. It turns out that the basic reproduction number of the corresponding ordinary differential equations plays an important role in the existence theory of traveling waves. Moreover, the critical wave speed can be explicitly obtained in terms of the  diffusion coefficient, recovery rate and death rate for the infected group, and partial derivative of incidence function at the disease-free equilibrium. Finally, we prove that the positive traveling wave solution does not exist if the basic reproduction number is no more than one, or the wave speed is less than the critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chapwanya, M., Lubuma, J.M.-S., Mickens, R.E.: From enzyme kinetics to epidemiological models with Michaelis–Menten contact rate: design of nonstandard finite difference schemes. Comput. Math. Appl. 64, 201–213 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cui, J., Sun, Y., Zhu, H.: The impact of media on the control of infectious diseases. J. Dyn. Differ. Equ. 20, 31–53 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cui, J., Tao, X., Zhu, H.: An SIS infection model incorporating media coverage. Rocky Mt. J. Math. 38, 1323–1334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diekmann, O.: Thresholds and traveling waves for the geographical spread of an infection. J. Math. Biol. 6, 109–130 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diekmann, O.: Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Differ. Equ. 33, 58–73 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka–Volterra equations. J. Math. Biol. 17, 11–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka–Volterra equations: a heteroclinic connection in \(R^4\). Trans. Am. Math. Soc. 286, 557–594 (1984)

    MATH  Google Scholar 

  10. Heesterbeek, J.A.P., Metz, J.A.J.: The saturating contact rate in marriage and epidemic models. J. Math. Biol. 31, 529–539 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hosono, Y., Ilyas, B.: Existence of traveling waves with any positive speed for a diffusive epidemic model. Nonlinear World 1, 277–290 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Hosono, Y., Ilyas, B.: Traveling waves for a simple diffusive epidemic model. Math. Models Methods Appl. Sci. 5, 935–966 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, W.: Traveling wave solutions for a class of predator–prey systems. J. Dyn. Differ. Equ. 24, 633–644 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, W.: A geometric approach in the study of traveling waves for some classes of non-monotone reaction–diffusion systems. J. Differ. Equ. 260, 2190–2224 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, W.-T., Lin, G., Ma, C., Yang, F.-Y.: Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete Contin. Dyn. Syst. B 19, 467–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, R., Wu, J., Zhu, H.: Media/psychological impact on multiple outbreaks of emerging infectious diseases. Comput. Math. Methods Med. 8, 153–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thieme, H., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models. J. Differ. Equ. 195, 430–470 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, H., Wang, X.-S.: Traveling wave phenomena in a Kermack–McKendrick SIR model. J. Dyn. Differ. Equ. 28, 143–166 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, X.-S., Wang, H., Wu, J.: Traveling waves of diffusive predator–prey systems: disease outbreak propagation. Discrete Contin. Dyn. Syst. A 32, 3303–3324 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X.-S., Wu, J., Yang, Y.: Richards model revisited: validation by and application to infection dynamics. J. Theor. Biol. 313, 12–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, Z.-C., Wu, J.: Travelling waves of a diffusive Kermack–McKendrick epidemic model with non-local delayed transmission. Proc. R. Soc. Lond. Ser. A 466, 237–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  24. Xu, Z.: Traveling waves in an SEIR epidemic model with the variable total population. Discrete Contin. Dyn. Syst. Ser. B 21, 3723–3742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yi, T., Zou, X.: Asymptotic behavior, spreading speeds, and traveling waves of nonmonotone dynamical systems. SIAM J. Math. Anal. 47, 3005–3034 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, T.: Minimal wave speed for a class of non-cooperative reaction–diffusion systems of three equations. J. Differ. Equ. 262, 4724–4770 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, T., Wang, W., Wang, K.: Minimal wave speed for a class of non-cooperative diffusion–reaction system. J. Differ. Equ. 260, 2763–2791 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H. Shu was partially supported by National Natural Science Foundation of China (Nos. 11601392, 11571257), Pujiang Talent Program of Shanghai (No. 16PJ1409100), and the Fundamental Research Funds for the Central Universities. J. Wu was partially supported by the Canada Research Chairs Program and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Sheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, H., Pan, X., Wang, XS. et al. Traveling Waves in Epidemic Models: Non-monotone Diffusive Systems with Non-monotone Incidence Rates. J Dyn Diff Equat 31, 883–901 (2019). https://doi.org/10.1007/s10884-018-9683-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9683-x

Keywords

Mathematics Subject Classification

Navigation