Skip to main content
Log in

Traveling Wave Solutions for a Class of Predator–Prey Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We use a shooting method to show the existence of traveling wave fronts and to obtain an explicit expression of minimum wave speed for a class of diffusive predator–prey systems. The existence of traveling wave fronts indicates the existence of a transition zone from a boundary equilibrium to a co-existence steady state and the minimum wave speed measures the asymptotic speed of population spread in some sense. Our approach is a significant improvement of techniques introduced by Dunbar. The advantage of our method is that it does not need the notion of Wazewski’s set and LaSalle’s invariance principle used in Dunbar’s approach. In our approach, we convert the equations for traveling wave solutions to a system of first order equations by a “non-traditional transformation”. With this converted new system, we are able to construct a Liapunov function, which gives an immediate implication of the boundedness and convergence of the relevant class of heteroclinic orbits. Our method provides a more efficient way to study the existence of traveling wave solutions for general predator–prey systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diekmann O.: Run for your life: a note on the asymptotic speed of propagation of an epidemic. J. Diff. Equ. 33, 58–73 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dunbar S.R.: Traveling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biol. 17, 11–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dunbar S.R.: Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in R 4. Trans. Am. Math. Soc. 286, 557–594 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Fife P.C.: Mathematical aspects of reacting and diffusing systems, lecture notes in biomath., 28. Springer-Verlag, New York (1979)

    Book  Google Scholar 

  5. Huang J., Lu G., Ruan S.: Existence of traveling wave solutions in a diffusive predator–prey model. J. Math. Biol. 46, 132–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang W., Han M.: Non-linear determinacy of minimum wave speed for a Lotka-Volterra diffusive competition model. J. Diff. Equ. 251, 1549–1561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lewis M., Li B., Weinberger H.: Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li B., Weinberger H., Lewis M.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 82–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li W., Wu S.: Traveling waves in a diffusive predator–prey model with holling type-III functional response. Chaos Solitons Fractals 37, 476–486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liang X., Zhao X.Q.: Asymptotic speed of pread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, X., Wu, C., Weng, P.: Traveling wave solutions for a predator–prey system with sigmoidal response function. J. Dynam. Diff. Equ. (2011) (to appear)

  12. Liu R., Feng Z., Zhu H., DeAngelis D.L.: Bifurcation analysis of a plant-herbivore model with toxin-determined functional response. J. Diff. Equ. 245, 442–467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mischaikow K., Reineck J.F.: Traveling waves in predator–prey systems. SIAM J. Math. Anal. 24, 1179–1214 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Murray J.D.: Mathematical biology. Springer-Verlag, New York (1993)

    Book  MATH  Google Scholar 

  15. Okubo A., Levin S.A.: Diffusion and Ecological Problems, Modern Prespectives. Springer-Verlag, New York (2001)

    Google Scholar 

  16. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Waves solutions of parabolic systems. Trans. Math. Monogr. Am. Math. Soc. 140 (1994)

  17. Weinberger H.F.: Long time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W. Traveling Wave Solutions for a Class of Predator–Prey Systems. J Dyn Diff Equat 24, 633–644 (2012). https://doi.org/10.1007/s10884-012-9255-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9255-4

Keywords

Navigation