Skip to main content
Log in

Periodic Solutions of a Singularly Perturbed Delay Differential Equation with Two State-Dependent Delays

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Periodic orbits and associated bifurcations of singularly perturbed state-dependent delay differential equations (DDEs) are studied when the profiles of the periodic orbits contain jump discontinuities in the singular limit. A definition of singular solution is introduced which is based on a continuous parametrisation of the possibly discontinuous limiting solution. This reduces the construction of the limiting profiles to an algebraic problem. A model two state-dependent DDE is studied in detail and periodic singular solutions are constructed with one and two local maxima per period. A complete characterisation of the conditions on the parameters for these singular solutions to exist facilitates an investigation of bifurcation structures in the singular case revealing folds and possible cusp bifurcations. Sophisticated boundary value techniques are used to numerically compute the bifurcation diagram of the state-dependent DDE when the perturbation parameter is close to zero. This confirms that the solutions and bifurcations constructed in the singular case persist when the perturbation parameter is nonzero, and hence demonstrates that the solutions constructed using our singular solution definition are useful and relevant to the singularly perturbed problem. Fold and cusp bifurcations are found very close to the parameter values predicted by the singular solution theory, and we also find period-doubling bifurcations as well as periodic orbits with more than two local maxima per period, and explain the alignment between the folds on different bifurcation branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Bellen, A., Zennaro, M.: Numerical methods for delay differential equations. OUP, Oxford (2003)

    Book  MATH  Google Scholar 

  2. Bellen, A., Maset, S., Zennaro, M., Guglielmi, N.: Recent trends in the numerical solution of retarded functional differential equations. Acta Numer. 18, 1–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broer, H.W., Kaper, T.J., Krupa, M.: Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman’s examples. J. Dyn. Differ. Equ. 25, 925–958 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calleja, R.C., Humphries, A.R., Krauskopf, B.: Resonance phenomena in a scalar delay differential equation with two state-dependent delays (2015) (in preparation)

  5. Chiba, H.: Periodic orbits and chaos in fast-slow systems with Bogdanov-Takens type fold points. J. Differ. Equ. 250, 112–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow, S.-N., Lin, X.-B., Mallet-Paret, J.: Transition layers for singularly perturbed delay differential equations with monotone nonlinearities. J. Dyn. Differ. Equ. 1, 3–43 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Luca, J., Humphries, A.R., Rodrigues, S.B.: Finite element boundary value integration of Wheeler-Feynman electrodynamics. J. Comput. Appl. Math. 236, 3319–3337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H., Hinke, Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54, 211–288 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  10. Eichmann, M.: A local Hopf bifurcation theorem for differential equations with state-dependent delays. PhD thesis, Universität Gießen, Germany (2006)

  11. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-Biftool. ACM Trans. Math. Soft. 28, 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erneux, T.: Applied Delay Differential Equations. Springer, New York (2009)

    MATH  Google Scholar 

  13. Foley, C., Mackey, M.C.: Dynamic hematological disease: a review. J. Math. Biol. 58, 285–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guglielmi, N., Hairer, E.: Asymptotic expansions for regularized state-dependent neutral delay equations. SIAM J. Math. Anal. 44, 2428–2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, S., Wu, J.: Bifurcation Theory of Functional Differential Equations. Applied Mathematical Sciences, vol. 184. Springer, New York (2013)

    Book  Google Scholar 

  16. Hale, J., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  17. Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: Functional differential equations with state-dependent delays: theory and applications. In: Cañada, A., Drábek, P., Fonda, A. (eds.) Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, pp. 435–545. Elsevier/North-Holland, Amsterdam (2006)

    Chapter  Google Scholar 

  18. Hu, Q., Wu, J.: Global Hopf bifurcation for differential equations with state-dependent delay. J. Differ. Equ. 248, 2801–2840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Humphries, A.R., DeMasi, O.A., Magpantay, F.M.G., Upham, F.: Dynamics of a delay differential equation with multiple state-dependent delays. Disc. Cont. Dyn. Syst. A 32, 2701–2727 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Insperger, T., Stépán, G., Turi, J.: State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47, 275–283 (2007)

    Article  MATH  Google Scholar 

  21. Ivanov, A.F., Sharkovsky, A.N.: Oscillations in singularly perturbed delay equations. In: Jones, C.K.R.T., Kirchgraber, U., Walther, H.O. (eds.) Dynamics Reported, Expositions in Dynamical Systems, vol. 1, pp. 164–224. Springer, New York (1992)

    Chapter  Google Scholar 

  22. Kozyreff, G., Erneux, T.: Singular Hopf bifurcation in a differential equation with large state-dependent delay. Proc. R. Soc. A 470, 2162 (2014)

    MathSciNet  Google Scholar 

  23. Liz, E., Rost, G.: Global dynamics in a commodity market model. J. Math. Anal. Appl. 398, 707–714 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mackey, M.C.: Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors. J. Econ. Theory 48, 497–509 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Magalhaẽs, L.T.: The asymptotics of singularly perturbed functional differential equations: distributed and concentrated delays are different. J. Math. Anal. Appl. 105, 250–257 (1985)

    Article  MathSciNet  Google Scholar 

  26. Mallet-Paret, J., Nussbaum, R.D.: Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation. Ann. Mat. Pura. Appl. 145, 33–128 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mallet-Paret, J., Nussbaum, R.D.: Boundary layer phenomena for differential-delay equations with state-dependent time lags, I. Arch. Ration. Mech. Anal. 120, 99–146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mallet-Paret, J., Nussbaum, R.D., Paraskevopoulos, P.: Periodic solutions for functional differential equations with multiple state-dependent time lags. Top. Methods Nonlinear Anal. 3, 101–162 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Mallet-Paret, J., Nussbaum, R.D.: Boundary layer phenomena for differential-delay equations with state-dependent time lags: II. J. Reine Angew. Math. 477, 129–197 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Mallet-Paret, J., Nussbaum, R.D.: Boundary layer phenomena for differential-delay equations with state-dependent time lags: III. J. Differ. Equ. 189, 640–692 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mallet-Paret, J., Nussbaum, R.D.: Superstability and rigorous asymptotics in singularly perturbed state-dependent delay-differential equations. J. Differ. Equ. 250, 4037–4084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mallet-Paret, J., Nussbaum, R.D.: Periodic solutions of differential equations with two state-dependent delays (2015) (in preparation)

  33. MATLAB R2014b, The MathWorks Inc., Natick, MA, USA (2014)

  34. Pellegrin, X., Grotta-Ragazzo, C., Malta, C.P., Pakdaman, K.: Metastable periodic patterns in singularly perturbed state-dependent delayed equations. Physica D 271, 48–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sharkovsky, A.N., Maistrenko, YuL, Romanenko, EYu.: Difference Equations and their Applications. Kluwer, Dordrecht (1993)

    Book  Google Scholar 

  36. Sieber, J.: Dimension reduction for periodic boundary value problems of functional differential equations. Disc. Cont. Dyn. Syst. A 32, 2607–2651 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2010)

    Google Scholar 

  38. Walther, H.-O.: On a model for soft landing with state dependent delay. J. Dyn. Differ. Equ. 19, 593–622 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Tony Humphries thanks John Mallet-Paret and Roger Nussbaum for introducing him to this problem and patiently explaining their results in the one delay case. He is also grateful to NSERC (Canada) for funding through the Discovery Grants program. Renato Calleja thanks the Department of Mathematics and Statistics at McGill for their hospitality during his time as a postdoctoral fellow and on several return visits to Montreal. He is also grateful to NSERC and the Centre de recherches mathématiques, Montréal for funding and to FQRNT, Québec for a PBEEE award. Daniel Bernucci and Michael Snarski are grateful to NSERC for Undergraduate Student Research Awards. Namdar Homayounfar thanks the Institut des Sciences Mathématiques, Montréal for an Undergraduate Summer Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Humphries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphries, A.R., Bernucci, D.A., Calleja, R.C. et al. Periodic Solutions of a Singularly Perturbed Delay Differential Equation with Two State-Dependent Delays. J Dyn Diff Equat 28, 1215–1263 (2016). https://doi.org/10.1007/s10884-015-9484-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9484-4

Keywords

Mathematics Subject Classification

Navigation