Skip to main content
Log in

State-dependent delay in regenerative turning processes

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stability of a two degrees of freedom model of the turning process is considered. An accurate modeling of the surface regeneration shows that the regenerative delay, determined by the combination of the workpiece rotation and the tool vibrations, is in fact state-dependent. For that reason, the mathematical model considered in this paper is a delay-differential equation with state-dependent time delay. In order to study linearized stability of stationary cutting processes, an associated linear system, corresponding to the state-dependent delay equation, is derived. Stability analysis of this linear system is performed analytically.

A comparison between the state-dependent delay model and the previously used constant or time-periodic delay models shows that the incorporation of the state-dependent delay into the model slightly affects the linear stability properties of the system in certain parameter domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tlusty, J., Polacek, A., Danek, C., Spacek, J.: Selbsterregte schwingungen an Werkzeugmaschinen. VEB Verlag Technik, Berlin (1962)

  2. Tobias, S.A.: Machine Tool Vibration. Blackie, London (1965)

    Google Scholar 

  3. Balachandran, B., Zhao, M.X.: A mechanics based model for study of dynamics of milling operations. Meccanica 35(2), 89–109 (2000)

    Article  MATH  Google Scholar 

  4. Peigne, G., Paris, H., Brissaud, D., Gouskov, A.: Impact of the cutting dynamics of small radial immersion milling operations on machined surface roughness. Int. J. Mach. Tools Manuf. 44(11), 1133–1142 (2004)

    Article  Google Scholar 

  5. Stépán, G.: Retarded dynamical systems. Longman, Harlow (1989)

  6. Altintas, Y., Budak, E.: Analytical prediction of stability lobes in milling. Ann. CIRP 44(1), 357–362 (1995)

    Article  Google Scholar 

  7. Insperger, T., Mann, B.P., Stépán, G., Bayly, P.V.: Stability of up-milling and down-milling, Part 1: Alternative analytical methods. Int. J. Mach. Tools Manuf. 43(1), 25–34 (2003)

    Article  Google Scholar 

  8. Bayly, P.V., Halley, J.E., Mann, B.P., Davies, M.A.: Stability of interrupted cutting by temporal finite element analysis. J. Manuf. Sci. Eng. 125(2), 220–225 (2003)

    Article  Google Scholar 

  9. Faassen, R.P.H., van de Wouw, N., Oosterling, J.A.J., Nijmeijer, H.: Prediction of regenerative chatter by modeling and analysis of high-speed milling. Int. J. Mach. Tools Manuf. 43(14), 1437–1446 (2003)

    Article  Google Scholar 

  10. Szalai, R., Stépán, G.: Stability boundaries of high-speed milling corresponding to period doubling are essentially closed curves. Proceedings of ASME International Mechanical Engineering Conference and Exposition, Washington D.C., USA, paper no. IMECE2003-42122 (2003)

  11. Corpus, W.T., Endres, W.J.: Added stability lobes in machining processes that exhibit periodic time variation – Part 1: An analytical solution. J. Manuf. Sci. Eng. 126(3), 467–474 (2004)

    Google Scholar 

  12. Merdol, S.D., Altintas, Y.: Multi frequency solution of chatter stability for low immersion milling. J. Manuf. Sci. Eng. 126(3), 459–466 (2004)

    Article  Google Scholar 

  13. Gradišek, J., Kalveram, M., Insperger, T., Weinert, K., Stépán, G., Govekar, E., Grabec, I.: On stability prediction for milling. Int. J. Mach. Tools Manuf. 45(7–8), 769–781 (2005)

    Article  Google Scholar 

  14. Long, X.-H., Balachandran, B.: Milling model with variable time delay. Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, paper no. IMECE2004-59207 (2004)

  15. Long, X.-H., Balachandran, B., Mann, B.P.: Dynamics of milling processes with variable time delay. Nonlinear Dyn., in this issue (2006)

  16. Faassen, R., van de Wouw, N., Oosterling, H., Nijmeijer, H.: Updated tool path modelling with periodic delay for chatter prediction in milling. Fifth EUROMECH Nonlinear Dynamics Conference, ENOC 2005, Eindhoven, The Netherlands, pp. 1080–1089 (2005)

  17. Sexton, J.S., Milne, R.D., Stone, B.J.: A stability analysis of single point machining with varying spindle speed. Appl. Math. Modelling 1, 310–318 (1977)

    Article  MathSciNet  Google Scholar 

  18. Jayaram, S., Kapoor, S.G., DeVor, R.E.: Analytical stability analysis of variable spindle speed machining. J. Manuf. Sci. Eng. 122(3), 391–397 (2000)

    Article  Google Scholar 

  19. Insperger, T., Stépán, G.: Stability analysis of turning with periodic spindle speed modulation via semi-discretization. J. Vib. Control 10(12), 1835–1855 (2004)

    Article  MATH  Google Scholar 

  20. Insperger, T., Stépán, G.: Semi-discretization method for delayed systems, Int. J. Numer. Methods Eng. 55(5), 503–518 (2002)

    Google Scholar 

  21. Insperger, T., Stépán, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay, Int. J. Numer. Methods Eng. 61(1), 117–141 (2004)

    Google Scholar 

  22. Győri, I., Hartung, F.: On the exponential stability of a state-dependent delay equation. Acta Sci. Math. 66, 71–84 (2000)

    Google Scholar 

  23. Krisztin, T., Arino, O.: The 2-dimensional attractor of a differential equation with state-dependent delay. J. Dynam. Differ. Equ. 13, 453–522 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartung, F., Turi, J.: Linearized stability in functional-differential equations with state-dependent delays. Proceedings of the conference Dynamical Systems and Differential Equations, added volume of Discrete and Continuous Dynamical Systems, pp. 416–425 (2000)

  25. Luzyanina, T., Engelborghs, K., Roose, D.: Numerical bifurcation analysis of differential equations with state-dependent delay. Int. J. Bifurcation Chaos 11(3), 737–753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hartung, F.: Linearized stability in periodic functional differential equations with state-dependent delays J. Comput. Appl. Math. 174, 201–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Richard, T., Germay, C., Detournay, E.: Self-excited stick-slip oscillations of drill bits. Comptes rendus Mecanique 332(8), 619-626 (2004)

    Google Scholar 

  28. Germay, C., van de Wouw, N., Sepulchure, R., Nijmeijer, H.: Axial stick-slip limit cycling in drill-string dynamics with delay, Fifth EUROMECH Nonlinear Dynamics Conference, ENOC 2005, Eindhoven, The Netherlands pp. 1136-1143 (2005)

  29. Insperger, T., Stépán, G., Hartung, F., Turi, J.: State-dependent regenerative delay in milling processes. in Proceedings of ASME International Design Engineering Technical Conferences, Long Beach CA, (2005), paper no. DETC2005-85282 (2005)

  30. Hartung, F., Turi, J.: On differentiability of solutions with respect to parameters in state-dependent delay equations. J. Differ. Equ. 135(2), 192–237 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Insperger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insperger, T., Stépán, G. & Turi, J. State-dependent delay in regenerative turning processes. Nonlinear Dyn 47, 275–283 (2007). https://doi.org/10.1007/s11071-006-9068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9068-2

Keywords

Navigation