Skip to main content
Log in

Multiple Solutions to Neumann Problems with Indefinite Weight and Bounded Nonlinearities

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the Neumann boundary value problem for the second order ODE

$$\begin{aligned} u^{\prime \prime } + (a^+(t)-\mu a^-(t))g(u) = 0, \qquad t \in [0,T], \end{aligned}$$
(1)

where \(g \in {\mathcal {C}}^1({\mathbb {R}})\) is a bounded function of constant sign, \(a^+,a^-: [0,T] \rightarrow {\mathbb {R}}^+\) are the positive/negative part of a sign-changing weight \(a(t)\) and \(\mu > 0\) is a real parameter. Depending on the sign of \(g^{\prime }(u)\) at infinity, we find existence/multiplicity of solutions for \(\mu \) in a “small” interval near the value

$$\begin{aligned} \mu _c = \frac{\int _0^T a^+(t) \, dt}{\int _0^T a^-(t) \, dt}\,. \end{aligned}$$

The proof exploits a change of variables, transforming the sign-indefinite Eq. (1) into a forced perturbation of an autonomous planar system, and a shooting argument. Nonexistence results for \(\mu \rightarrow 0^+\) and \(\mu \rightarrow +\infty \) are given, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. These assumptions are related to the variational approach to (3) and imply, respectively, the coercivity or a saddle geometry for the associated Lagrange functional (other conditions coming from topological degree theory, like the Landesman–Lazer ones, could be given, as well, being however less general [13]). Notice that, usually, nonresonance conditions are stated for the \(T\)-periodic problem, but the same results hold when one considers Neumann solutions. Our choice of studying the Neumann BVP is due to the (shooting) method used in our proofs.

  2. This point requires some care. Indeed, as shown in [8], it is always possible to cast back Eq. (14) into an equation of the type \(u^{\prime \prime } + q(t){\mathfrak {g}}(u) = 0\), but the function \({\mathfrak {g}}(u)\) may be possibly defined only on a proper open subinterval of \({\mathbb {R}}\).

References

  1. Alama, S., Tarantello, G.: On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 1, 439–475 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkinson, F.V., Everitt, W.N., Ong, K.S.: On the \(m\)-coefficient of Weyl for a differential equation with an indefinite weight function. Proc. Lond. Math. Soc. (3) 29, 368–384 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandle, C., Pozio, M.A., Tesei, A.: Existence and uniqueness of solutions of nonlinear Neumann problems. Math. Z. 199, 257–278 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bereanu, C., Mawhin, J.: Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and \(\varphi \)-Laplacian. NoDEA Nonlinear Differential Equ. Appl. 15, 159–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems. NoDEA Nonlinear Differential Equ. Appl. 2, 553–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonheure, D., Gomes, J.M., Habets, P.: Multiple positive solutions of superlinear elliptic problems with sign-changing weight. J. Differential Equ. 214, 36–64 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boscaggin, A., Zanolin, F.: Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight. J. Differential Equ. 252, 2900–2921 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boscaggin, A., Zanolin, F.: Second order ordinary differential equations with indefinite weight: the Neumann boundary value problem. Ann. Mat. Pura Appl. doi:10.1007/s10231-013-0384-0

  9. Bravo, J.L., Torres, P.J.: Periodic solutions of a singular equation with indefinite weight. Adv. Nonlinear Stud. 10, 927–938 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Butler, G.J.: Rapid oscillation, nonextendability, and the existence of periodic solutions to second order nonlinear ordinary differential equations. J. Differential Equ. 22, 467–477 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cid, J.Á., Sanchez, L.: Periodic solutions for second order differential equations with discontinuous restoring forces. J. Math. Anal. Appl. 288, 349–364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feltrin, G., Zanolin, F.: Multiple positive solutions for a superlinear problem: a topological approach, (preprint)

  13. Fonda, A., Garrione, M.: Nonlinear resonance: a comparison between Landesman-Lazer and Ahmad-Lazer-Paul conditions. Adv. Nonlinear Stud. 11, 391–404 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Gaudenzi, M., Habets, P., Zanolin, F.: An example of a superlinear problem with multiple positive solutions. Atti Sem. Mat. Fis. Univ. Modena 51, 259–272 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Girão, P.M., Gomes, J.M.: Multibump nodal solutions for an indefinite superlinear elliptic problem. J. Differential Equ. 247, 1001–1012 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hess, P., Kato, T.: On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. Partial Differential Equ. 5, 999–1030 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Le, V.K., Schmitt, K.: Minimization problems for noncoercive functionals subject to constraints. Trans. Am. Math. Soc. 347, 4485–4513 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, vol. 74. Springer, New York (1989)

    Book  MATH  Google Scholar 

  19. Papini, D., Zanolin, F.: A topological approach to superlinear indefinite boundary value problems. Topol. Methods Nonlinear Anal. 15, 203–233 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Sabatini, M.: On the period function of \(x^{\prime \prime } + f(x)x^{\prime 2} + g(x) = 0\). J. Differential Equ. 196, 151–168 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Terracini, S., Verzini, G.: Oscillating solutions to second-order ODEs with indefinite superlinear nonlinearities. Nonlinearity 13, 1501–1514 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ward, J.R.: Periodic solutions of ordinary differential equations with bounded nonlinearities. Topol. Methods Nonlinear Anal. 19, 275–282 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Boscaggin.

Additional information

The authors acknowledge the support of GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscaggin, A., Garrione, M. Multiple Solutions to Neumann Problems with Indefinite Weight and Bounded Nonlinearities. J Dyn Diff Equat 28, 167–187 (2016). https://doi.org/10.1007/s10884-015-9430-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9430-5

Keywords

Mathematics Subject Classification

Navigation