Skip to main content
Log in

Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We introduce a model of dynamic visco-elasto-plastic evolution in the linearly elastic regime and prove an existence and uniqueness result. Then we study the limit of (a rescaled version of) the solutions when the data vary slowly. We prove that they converge, up to a subsequence, to a quasistatic evolution in perfect plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Agostiniani, V.: Second order approximations of quasistatic evolution problems in finite dimension. Discrete Contin. Dyn. Syst. A 32(4), 1125–1167 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anzellotti, G., Luckhaus, S.: Dynamical evolution in elasto-perfectly plastic bodies. Appl. Math. Opt. 15, 121–140 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babadjian, J.F., Mora, M.G.: Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models. 2nd rev. ed. Q. Appl. Math., Preprint (2013)

  4. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. 2nd rev. ed. Reidel, Dordrecht (1986)

  5. Brezis, H.: Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Hollande Publishing Company, Amsterdam (1972)

    Google Scholar 

  6. Maso Dal, G., De Simone, A., Mora, M.G.: Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180, 237–291 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189, 469–544 (2008a)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media 3(3), 567–614 (2008b)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dal Maso, G., De Simone, A., Solombrino, F.: Quasistatic evolution for cam-clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differ. Equ. 40, 125–181 (2011)

    Article  MATH  Google Scholar 

  10. Efendiev, M., Mielke, A.: On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13, 151–167 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hill, R.: The Mathematical Theory of the Plasticity. Oxford University Press (1950)

  13. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  14. Knees, D., Mielke, A., Zanini, C.: On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18, 1529–1569 (2009)

    Article  MathSciNet  Google Scholar 

  15. Knees, D., Mielke, A., Zanini, C.: Crack growth in polyconvex materials. Phys. D 239, 1470–1484 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kohn, R., Temam, R.: Dual spaces of stresses and strains, with application to hencky plasticity. Appl. Math. Optim. 10, 1–35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lazzaroni, G., Toader, R.: A model for crack propagation based on viscous approximation. Math. Models Methods Appl. Sci. 21, 2019–2047 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lazzaroni, G., Toader, R.: Some remarks on the viscous approximation of crack growth. Discrete Contin. Dyn. Syst. Ser. S 6(1), 131–146 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lubliner, J.: Plasticity Theory. Macmillan Publishing Company (1990)

  20. Mielke, A.: Evolution of Rate-Independent Systems. In: Dafermos, C.M., Feireisl, E. (eds.) Evolutionary Equations. Handbook of Differential Equations, vol. II, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005)

    Google Scholar 

  21. Mielke, A., Truskinovsky, L.: From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Ration. Mech. Anal. 203(2), 577–619 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mielke, A., Rossi, R., Savaré, G.: Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25, 585–615 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. 18(1), 36–80 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Reshetnyak, YuG: Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9, 1039–1045 (1968)

    Article  Google Scholar 

  25. Rockafellar, R.T.: Convex Analysis. Vol. 28 of Princeton Math. Series, Princeton Univ. Press, (1970). Also available from 1997 in paperback from the same publisher, in the series Princeton Landmarks in Mathematics and Physics. Siberian Math. J. 9, 1039–1045 (1968)

  26. Stefanelli, U.: A Variational Characterization of Rate-Independent Evolution. Math. Nachr. 282, 1492–1512 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Suquet, P.M.: Sur les Équations de la Plasticité: Existence et Régularité des Solutions. J. Mécanique 20(1), 3–39 (1981)

    MATH  MathSciNet  Google Scholar 

  28. Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris. Translation of Problèmes Mathématiques en Plasticité, Gauthier-Villars, Paris (1983) (1985)

  29. Temam, R., Strang, G.: Duality and relaxation in variational problem of plasticity. J. Mécanique 19, 493–527 (1980)

    MATH  MathSciNet  Google Scholar 

  30. Toader, R., Zanini, C.: An artificial viscosity approach to quasistatic crack growth. Boll. Unione Mat. Ital. 9(2), 1–35 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This material is based on work supported by the Italian Ministry of Education, University, and Research under the Project “Calculus of Variations” (PRIN 2010-11) and by the European Research Council under Grant No. 290888 “Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture”. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors thank the referee for some useful remarks about the role of the viscosity tensor \(A_1\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Scala.

Appendix

Appendix

This section contains the proof of two technical results concerning the convergence of suitable Riemann sums for functions with values in Banach spaces.

Lemma 6

Let \(X\) be a Banach space, let \(\phi \in W^{1,1}([0,T];X)\), let \(S\subset (0,T]\) be a set of full measure containing \(T\) and let \(\psi :S\rightarrow X'\) be a bounded weakly* continuous function. For every \(k>0\) let \(\{t^k_i\}_{0\le i\le k}\) be a subset of \(S\cup \{0\}\) such that \(0=t^k_0<t^k_1<\dots <t^k_k=T\) and \(\max _{i=1}^k|t^k_i-t^k_{i-1}|\rightarrow 0\) as \(k\rightarrow +\infty \). Then

$$\begin{aligned} \lim _{k\rightarrow \infty }\sum _{i=1}^k\langle \psi (t^k_i),\phi (t^k_{i})- \phi (t^k_{i-1})\rangle =\int _0^T\langle \psi (t),\dot{\phi }(t)\rangle dt, \end{aligned}$$

where \(\langle \cdot ,\cdot \rangle \) denotes the duality product between \(X'\) and \(X\).

Proof

Let \(\psi _k:[0,T]\rightarrow X'\) be the piecewise constant function defined by \(\psi _k(t)=\psi (t^k_i)\) for \(t^k_{i-1}< t\le t^k_i\). Then

$$\begin{aligned} \sum _{i=1}^k\langle \psi (t^k_i),\phi (t^k_{i})-\phi (t^k_{i-1})\rangle =\int _0^T \langle \psi _k(t),\dot{\phi }(t)\rangle dt. \end{aligned}$$

Since \(\psi _k(t)\rightharpoonup \! \psi (t)\) weakly* for every \(t\in S\) we have \(\langle \psi _k(t),\dot{\phi }(t)\rangle \rightarrow \langle \psi (t),\dot{\phi }(t)\rangle \) for a.e. \(t\in [0,T]\). The conclusion follows from the Dominated Convergence Theorem.

The next lemma extends the previous result to the case of the duality product introduced in (3.13).

Lemma 7

Let \(\varrho \) be the function introduced in the safe-load condition (3.23)–(3.24) and let \(p:[0,T]\rightarrow \mathcal M_b(\varOmega \cup \varGamma _0;{\mathbb {M}}^{n \times n}_D)\) be a bounded function. Assume that there exists a set \(S\subset (0,T]\) of full measure containing \(T\) such that for every \(t\in S\) the function \(p\) is continuous at \(t\) with respect to the strong topology of \(\mathcal M_b(\varOmega \cup \varGamma _0;{\mathbb {M}}^{n \times n}_D)\) and \(p(t)\in \varPi _{\varGamma _0}(\varOmega )\). For every \(k>0\) let \(\{t^k_i\}_{0\le i\le k}\) be a subset of \(S\cup \{0\}\) such that \(0=t^k_0<t^k_1<\dots <t^k_k=T\) and \(\max _{i=1}^k|t^k_i-t^k_{i-1}|\rightarrow 0\) as \(k\rightarrow +\infty \). Then

$$\begin{aligned} \lim _{k\rightarrow \infty }\sum _{i=1}^k\langle \varrho _D(t^k_{i})-\varrho _D(t^k_{i-1}),p(t^k_i)\rangle =\int _0^T\langle \dot{\varrho }_D(t),p(t)\rangle dt, \end{aligned}$$

where \(\langle \cdot ,\cdot \rangle \) denotes the duality product introduced in (3.13).

Proof

Let \(p_k:[0,T]\rightarrow \varPi _{\varGamma _0}(\varOmega )\) be the piecewise constant function defined by \(p_k(t)=p(t^k_i)\) for \(t^k_{i-1}< t\le t^k_i\). Using (3.27) and (3.28) we obtain that

$$\begin{aligned}&\sum _{i=1}^k\langle \varrho _D(t^k_{i})-\varrho _D(t^k_{i-1}),p(t^k_i)\rangle =\int _0^T\langle \dot{\varrho }_D(t),p_k(t)\rangle dt=\nonumber \\&=\int _0^T\langle \dot{\varrho }_D(t),p_k(t)-p(t)\rangle dt + \int _0^T\langle \dot{\varrho }_D(t),p(t)\rangle dt. \end{aligned}$$
(6.1)

By (3.14) we have

$$\begin{aligned} \int _0^T|\langle \dot{\varrho }_D(t),p_k(t)-p(t)\rangle | dt\le \int _0^T\Vert \dot{\varrho }_D(t)\Vert _{L^\infty } \Vert p_k(t)-p(t)\Vert _{\mathcal M_b} dt \end{aligned}$$

Since \(\Vert p_k(t)-p(t)\Vert _{\mathcal M_b}\rightarrow 0\) for a.e. \(t\in S\) by our continuity assumption and \(t\mapsto \Vert \dot{\varrho }(t)\Vert _{L^\infty }\) belongs to \(L^1([0,T])\) (see [6, Theorem 7.1]), we obtain

$$\begin{aligned} \lim _{k\rightarrow \infty } \int _0^T|\langle \dot{\varrho }_D(t),p_k(t)-p(t)\rangle | dt=0 \end{aligned}$$
(6.2)

by the Dominated Convergence Theorem. The conclusion follows from (6.1) and (6.2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maso, G.D., Scala, R. Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes. J Dyn Diff Equat 26, 915–954 (2014). https://doi.org/10.1007/s10884-014-9409-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9409-7

Keywords

Navigation