Skip to main content

Advertisement

Log in

Threshold Behavior in a Stochastic SIS Epidemic Model with Standard Incidence

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider a stochastic SIS epidemic model with perturbed disease transmission coefficient. We discuss the threshold behavior in the sense that if \(\mathcal {R}_0^s<1\), the disease dies out in probability; whereas if \(\mathcal {R}_0^s>1\), the densities of the distributions of the solution can converge in \(L^1\) to an invariant density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, S., Kusuoka, S., Strook, D.: On the support of Wiener functionals. In: Elworthy, K.D., Ikeda, N. (eds.) Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotic, Pitman Research Notes in Mathematics Series, vol. 284, pp. 3–34. Longman Science and Technology, Harlow (1993)

    Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1992)

    Google Scholar 

  3. Arous, G.B., Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Probab. Theory Relat. Fields 90, 377–402 (1991)

    Article  MATH  Google Scholar 

  4. Bell, D.R.: The Malliavin Calculus. Dover publications, New York (2006)

    MATH  Google Scholar 

  5. Dietz, K.: Transmission and control of arbovirus diseases. In: Cooke, K.L. (ed.) Epidemiology, pp. 104–121. SIAM, Philadelphia (1975)

    Google Scholar 

  6. Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71, 876–902 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guo, H.B., Li, M.Y., Shuai, Z.S.: Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can. Appl. Math. Q. 14, 259–284 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Hethcote, H.W.: The basic epidemiology models: models, expressions for \(R_0\), parameter estimation, and applications. In: Ma, S., Xia, Y. (eds.) Mathematical Understanding of Infectious Disease Dynamics. Lecture Notes Series, vol. 16, pp. 1–128. World Scientific Publishing Co. Pte. Ltd., Hackensack (2009)

    Chapter  Google Scholar 

  9. Ji, C., Jiang, D., Yang, Q., Shi, N.: Dynamics of a multigroup SIR epidemic model with stochastic perturbation. Automatica 48, 121–131 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics (part I). Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  11. Korobeinikov, A., Wake, G.C.: Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15, 955–960 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lajmanovich, A., York, J.A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28, 221–236 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lin, Y., Jiang, D.: Long-time behaviour of a perturbed SIR model by white noise. Discret. Contin. Dyn. Syst. Ser. B 18, 1873–1887 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mao, X.R.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  15. Nasell, I.: Stochastic models of some endemic infections. Math. Biosci. 179, 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pichór, K., Rudnicki, R.: Stability of Markov semigroups and applications to parabolic systems. J. Math. Anal. Appl. 215, 56–74 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rudnicki, R.: Long-time behaviour of a stochastic prey–predator model. Stoch. Process. Appl. 108, 93–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rudnicki, R., Pichór, K.: Influence of stochastic perturbation on prey–predator systems. Math. Biosci. 206, 108–119 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. III, pp. 333–360, University of California Press, Berkeley (1972)

  20. Tornatore, E., Buccellato, S.M., Vetro, P.: Stability of a stochastic SIR system. Phys. A 354, 111–126 (2005)

    Article  Google Scholar 

  21. Vargas-De-León, C.: Stability analysis of a SIS epidemic model with standard incidence. Foro-Red-Mat 28, 1–11 (2011)

    Google Scholar 

  22. Zhou, J., Hethcote, H.W.: Population size dependent incidence in models for diseases without immunity. J. Math. Biol. 32, 809–834 (1994)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by Program for Changjiang Scholars and Innovative Research Team in University, NSFC of China (Nos.: 11371085 and 11201008), and the Ph.D. Programs Foundation of Ministry of China (No. 200918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Jiang.

Appendix

Appendix

In this appendix, we prove that

$$\begin{aligned} E\left[ \int _0^T\frac{S_tI_t^aX_t^{-b}Y_t^{-b}}{S_t+I_t} dB_t\right] =0,\quad \text {for}\; \text {any }\ T>0. \end{aligned}$$
(7.1)

In the following, whenever the formula of random variables is used it is understood in the almost sure sense, and writing “almost surely” or “a.s.” is omitted.

By Itô’s formula, we get

$$\begin{aligned} d\log S_t&= \left( \frac{\Lambda }{S_t}-\frac{\beta I_t}{S_t+I_t}-\mu +\phi \frac{I_t}{S_t}-\frac{\sigma I_t^2}{2(S_t+I_t)^2}\right) dt-\frac{\sigma I_t}{S_t+I_t}dB_t\\&\ge \left( -\beta -\mu +\phi \frac{I_t}{S_t}-\frac{\sigma }{2}\right) dt-\frac{\sigma I_t}{S_t+I_t}dB_t,\\ \frac{d\log X_t}{dt}&= -\mu +\frac{\alpha I_t}{X_t}\quad \text {and}\quad \frac{d\log Y_t}{dt} =-(\alpha +\mu )+\frac{\alpha S_t}{Y_t}. \end{aligned}$$

Integrating the above three formulas from \(0\) to \(T\) and taking \(T\rightarrow \infty \), we get

$$\begin{aligned} \lim _{T\rightarrow \infty }\frac{1}{T}\int _0^T\frac{I_t}{S_t}dt=\frac{1}{\phi }\lim _{T\rightarrow \infty }\left( \beta +\mu +\frac{\sigma }{2}+\frac{\log S_T}{T}\right)&\le \frac{\beta +\mu +\sigma /2}{\phi },\end{aligned}$$
(7.2)
$$\begin{aligned} \lim _{T\rightarrow \infty }\frac{1}{T}\int _0^T\frac{I_t}{X_t}dt=\frac{1}{\alpha }\lim _{T\rightarrow \infty }\left( \mu +\frac{\log X_T}{T}\right)&\le \frac{\mu }{\alpha }, \end{aligned}$$
(7.3)

and

$$\begin{aligned} \lim _{T\rightarrow \infty }\frac{1}{T}\int _0^T\frac{S_t}{Y_t}dt=\frac{1}{\alpha }\lim _{T\rightarrow \infty }\left( \alpha +\mu +\frac{\log Y_T}{T}\right) \le 1+\frac{\mu }{\alpha }, \end{aligned}$$
(7.4)

where in the first inequality we use the fact that \(\lim _{T\rightarrow \infty }\frac{1}{T}\int _0^T\frac{I_t}{S_t+I_t}dB_t=0\). By employing Hölder’s Inequality, (7.2)–(7.4) guarantee that

$$\begin{aligned} \int _0^T\left( \frac{S_tI_t^aX_t^{-b}Y_t^{-b}}{S_t+I_t}\right) ^2 dt=&\int _0^T\frac{S_t^{2}I_t^{2a-4b}}{(S_t+I_t)^2}\left( \frac{I_t}{S_t}\right) ^{2b}\left( \frac{S_t}{Y_t}\right) ^{2b}\left( \frac{I_t}{X_t}\right) ^{2b} dt\\ \le&\left( \frac{\Lambda }{\mu }\right) ^{2a-4b}\int _0^T\left( \frac{I_t}{S_t}\right) ^{2b}\left( \frac{S_t}{Y_t}\right) ^{2b}\left( \frac{I_t}{X_t}\right) ^{2b} dt \le M_T, \end{aligned}$$

where \(M_T\) is a positive constant depending on \(T\). Consequently,

$$\begin{aligned} \int _0^TE\left( \frac{S_tI_t^aX_t^{-b}Y_t^{-b}}{S_t+I_t}\right) ^2 dt\le M_T. \end{aligned}$$

Thus, (7.1) holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Jiang, D. Threshold Behavior in a Stochastic SIS Epidemic Model with Standard Incidence. J Dyn Diff Equat 26, 1079–1094 (2014). https://doi.org/10.1007/s10884-014-9408-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9408-8

Keywords

Mathematics Subject Classification

Navigation