Skip to main content
Log in

Population size dependent incidence in models for diseases without immunity

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Epidemiological models of SIS type are analyzed to determine the thresholds, equilibria, and stability. The incidence term in these models has a contact rate which depends on the total population size. The demographic structures considered are recruitment-death, generalized logistic, decay and growth. The persistence of the disease combined with disease-related deaths and reduced reproduction of infectives can greatly affect the population dynamics. For example, it can cause the population size to decrease to zero or to a new size below its carrying capacity or it can decrease the exponential growth rate constant of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R. M., Jackson, H. C., May, R. M., Smith, A. D. M.: Population dynamics of fox rabies in Europe. Nature 289, 765–777 (1981)

    Google Scholar 

  2. Anderson, R. M., May, R. M.: Population biology of infectious diseases I. Nature 280, 361–367 (1979)

    Google Scholar 

  3. Anderson, R. M., May, R. M.: The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. Roy. Soc. London B291, 451–524 (1981)

    Google Scholar 

  4. Anderson, R. M. and May, R. M. (eds).: Population Biology of Infectious Diseases. Berlin Heidelberg New York Springer (1982)

    Google Scholar 

  5. Anderson, R. M., May, R. M.: Infectious Diseases of Humans: Dynamics and Control. Oxford, Oxford University Press, (1991)

    Google Scholar 

  6. Anderson, R. M., May, R. M., McLean, A. R.: Possible demographic consequences of AIDS in developing countries. Nature 332, 228–234 (1988)

    CAS  PubMed  Google Scholar 

  7. Anderson, R. M., Medley, G. P., May, R. M., Johnson, A. M.: A preliminary study of the transmission dynamics of the human immunodeficiency virus, the causative agent of AIDS. IMA J. Math. Appl. Med. Biol. 3, 229–263 (1986)

    Google Scholar 

  8. Bailey, N. T. J.: The Mathematical Theory of Infectious Diseases (2nd ed.). New York: Hafner (1975)

    Google Scholar 

  9. Becker, N.: Analysis of Infectious Disease Data. Chapman and Hall, New York (1989)

    Google Scholar 

  10. Beverton, R. J. H., Holt, S. J.: On the dynamics of exploited fish populations. Fishery Investigations, Series 2, No.19, H.M.S.O., London (1957)

    Google Scholar 

  11. Brauer, F.: Epidemic models in populations of varying size. In: Mathematical Approaches to Problems in Resource Management and Epidemiology. Castillo-Chavez, C. C., Levin, S. A. and Shoemaker, C. (eds.). Lecture Notes in Biomathematics 81. pp. 109–123, Berlin Heidelberg New York: Springer (1989)

    Google Scholar 

  12. Brauer, F.: Models for the spread of universally fatal diseases. J. Math. Biol. 28, 451–462 (1990)

    CAS  PubMed  Google Scholar 

  13. Brauer, F.: Models for universally fatal diseases, II. In: Differential Equations Models in Biology, Epidemiology and Ecology. Busenberg, S., Martelli, M. (eds.). Lecture Notes in Biomathematics 92, pp 57–69, Berlin Heidelberg New York: Springer (1991)

    Google Scholar 

  14. Bremermann, H. J., Thieme, H. R.: A competitive exclusion principle for pathogen virulence. J. Math. Biol. 27, 179–190 (1989)

    Google Scholar 

  15. Busenberg, S., Cooke, K. L.: Vertically Transmitted Diseases. Biomathematics Vol. 23. Berlin Heidelberg New York: Springer (1993)

    Google Scholar 

  16. Busenberg, S., Cooke, K. L., Pozio, A.: Analysis of a model of a vertically transmitted disease. J. Math. Biol. 17, 305–329 (1983)

    Google Scholar 

  17. Busenberg, S., Cooke, K. L., Thieme, H. R.: Demographic change and persistence of HIV/AIDS in a heterosexual population. SIAM J. Appl. Math. 51: 1030–1051 (1991)

    Google Scholar 

  18. Busenberg, S. N. and Hadeler, K. P.: Demography and epidemics. Math. Biosci. 101, 41–62 (1990)

    Google Scholar 

  19. Busenberg, S. N., van den Driessche, P.: Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 28, 257–270 (1990)

    Google Scholar 

  20. Castillo-Chavez, C. C. (ed.): Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics 83. Berlin Heidelberg New York: Springer (1989)

    Google Scholar 

  21. Castillo-Chavez, C. C., Cooke, K., Huang, W., Levin, S. A.: On the role of long incubation periods in the dynamics of AIDS I: single population models. J. Math. Biol. 27, 373–398 (1989)

    Google Scholar 

  22. DeJong, M. C. M., Diekmann, O., Heestebeek, J. A. P.: How does transmission depend on population size? In: Human Infectious Diseases, Isham, V., Medley, G. (eds), Proceedings of a Conference at the Isaac Newton Institute for Mathematical Sciences, March 1993

  23. Derrick, W. R., van den Driessche, P.: A disease transmission model in a nonconstant population. J. Math. Biol. 31, 495–512 (1993)

    Google Scholar 

  24. Diekmann, O., Kretzschmar, M.: Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29, 539–570 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Dietz, K.: Overall population patterns in the transmission cycle of infectious disease agents. In: Population Biology of Infectious Diseases, Anderson, R. M., May, R. M. (eds). Berlin Heidelberg New York: Springer (1982)

    Google Scholar 

  26. Dietz, K., Schenzle, D.: Mathematical models for infectious disease statistics. In: A Celebration of Statistics, Atkinson, A. C., Fienberg, S. E. (eds.). Berlin Heidelberg New York: Springer 167–204 (1985)

    Google Scholar 

  27. Edelstein-Keshet, L.: Mathematical Models in Biology. New York, Random House (1988)

    Google Scholar 

  28. Fine, P.: Vectors and vertical transmission: an epidemiological perspective. Ann N. Y. Acad. Sci. 266, 173–194 (1975)

    CAS  PubMed  Google Scholar 

  29. Gao, L. Q., Hethcote, H. W.: Disease transmission models with density-dependent demographics. J. Math. Biol. 30, 717–731 (1992)

    Google Scholar 

  30. Grabiner, D.: Mathematical models for vertically transmitted diseases. Technical report, Pomona College, Claremont, California (1988)

    Google Scholar 

  31. Greenhalgh, D.: An epidemic model with a density-dependent death rate. IMA J. Math. Appl. Med. Biol. 7, 1–26 (1990)

    Google Scholar 

  32. Greenhalgh, D.: Vaccination in density dependent epidemic models. Bull. Math. Biol. 54, 733–758 (1992)

    Google Scholar 

  33. Greenhalgh, D.: Some threshold and stability results for epidemic models with a density dependent death rate. Theor. Pop. Biol. 42, 130–151 (1992)

    Google Scholar 

  34. Greenhalgh, D.: Some results for an SEIR epidemic model with density dependence in the death rate. IMA J. Math. Appl. Med. Biol. 9, 67–106 (1992)

    Google Scholar 

  35. Guilland, F. M. D.: The impact of infectious diseases on wild animal populations. Proceedings of the Wildlife Diseases Workshop, March 14–20, 1993, Isaac Newton Institute for the Mathematical Sciences. Cambridge: Cambridge University Press (to be published)

  36. Hale, J. K.: Ordinary Differential Equations. New York; Wiley (1969)

    Google Scholar 

  37. Heesterbeek, J. A. P., Metz, J. A. J.: The saturating contact rate in marriage- and epidemic models. J. Math. Biol. 31, 529–539 (1993)

    Google Scholar 

  38. Hethcote, H. W.: Qualitative analyses of communicable disease models. Math. Biosci. 28, 335–356 (1976)

    Google Scholar 

  39. Hethcote, H. W.: Three basic epidemiological models. In: Applied Mathematical Ecology, pp. 119–144, Gross, L., Hallam, T. G., Levin, S. A. (eds.). Berlin Heidelberg New York: Springer (1989)

    Google Scholar 

  40. Hethcote, H. W.: A thousand and one epidemic models. In: Frontiers in Theoretical Biology, Levin, S. A. (ed.), Lecture Notes in Biomathematics 100. Berlin Heidelberg New York: Springer (to be published)

  41. Hethcote, H. W., Levin, S. A.: Periodicity in epidemiological models. In: Applied Mathematical Ecology, pp. 193–211, Gross, L., Hallam, T. G., Levin, S. A. (eds.). Berlin Heidelberg New York: Springer (1989)

    Google Scholar 

  42. Hethcote, H. W., Stech, H. W., van den Driessche, P.: Periodicity and stability in epidemic models: asurvey. In: Differential Equations and Applications in Ecology, Epidemics and Population Problems, pp. 65–82, Busenberg, S. N., Cooke, K. L. (eds.). New York: Academic Press, (1981)

    Google Scholar 

  43. Hethcote, H. W., Van Ark, J. W.: Epidemiological models with heterogeneous populations: Proportionate mixing, parameter estimation and immunization programs. Math Biosci. 84, 85–118 (1987)

    Google Scholar 

  44. Hethcote, H. W., Van Ark, J. W.: Modeling HIV Transmission and AIDS in the United States. Lecture Notes in Biomathematics 95. Berlin Heideiberg New York: Springer (1992)

    Google Scholar 

  45. Hethcote, H. W., Yorke, J. A.: Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics 56. Berlin Heidelberg New York: Springer (1984)

    Google Scholar 

  46. Hirsch, W. M., Hanisch, H., Gabriel, J. P.: Differential equation models for some parasitic infections; methods for the study of asymptotic behavior. Comm. Pure Appl. Math. 38, 733–753 (1985)

    Google Scholar 

  47. Hyman, J. M., Stanley, E. A.: Using mathematical models to understand the AIDS epidemic. Math. Biosci. 90, 415–473 (1988)

    Google Scholar 

  48. Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., Perry, T.: Modeling and analyzing HIV transmission: the effect of contact patterns. Math. Biosci. 92, 119–199 (1988)

    Google Scholar 

  49. Jordan, D. W., Smith, P.: Nonlinear Ordinary Differential Equations. Oxford: Clarendon Press (1987)

    Google Scholar 

  50. Lin, X.: On the uniqueness of endemic equilibria of an HIV/AIDS transmission model for a heterogeneous population. J. Math. Biol. 29, 779–790 (1991)

    CAS  PubMed  Google Scholar 

  51. Lin, X.: Qualitative analysis of an HIV transmission model. Math. Biosci. 104, 111–134 (1991)

    Google Scholar 

  52. May, R. M., Anderson, R. M.: Regulation and stability of host-parasite population interactions II: Destabilizing processes. J. Anim Ecol 47, 248–267 (1978)

    Google Scholar 

  53. May, R. M., Anderson, R. M.: Population biology of infectious diseases II. Nature 280, 455–461 (1979)

    Google Scholar 

  54. McNeill, W. H.: Plagues and People. Blackwell, Oxford (1976)

    Google Scholar 

  55. Mena-Lorca, J.: Periodicity and stability in epidemiological models with disease-related deaths. Ph.D. Thesis: University of Iowa (1988)

  56. Mena-Lorca, J., Hethcote, H. W.: Dynamic models of infectious diseases as regulators of population sizes. J. Math. Biol. 30, 693–716 (1992)

    Google Scholar 

  57. Miller, R. K., Michel, A. N.: Ordinary Differential Equations. New York: Academic Press, (1982)

    Google Scholar 

  58. Plowright, W.: The effects of rinderpest and rinderpest control on wildlife in Africa. Symp. Zool. Soc. Lond. 60, 175–199 (1982)

    Google Scholar 

  59. Pugliese, A.: Population models for diseases with no recovery. J. Math. Biol. 28, 65–82 (1990)

    Google Scholar 

  60. Pugliese, A.: An SEI epidemic model with varying population size. In: Differential Equation Models in Biology, Epidemiology and Ecology, pp. 121–138, Busenberg, S., Martelli, M. (eds.). Lecture Notes in Biomathematics 92. Berlin Heidelberg New York: Springer (1991)

    Google Scholar 

  61. Ricker, W. E.: Stock and recruitment. J. Fish. Res. Bd. Can 11, 559–623 (1954)

    Google Scholar 

  62. Swart, J. H.: Hopf bifurcation and stable limit cycle behavior in the spread of infectious diesease, with special application to fox rabies. Math. Biosci. 95, 199–207 (1989)

    Google Scholar 

  63. Thieme, H. R.: Persistence under relaxed point-dissipativity (with Application to an Endemic Model), SIAM J. Math. Anal. 24, 407–435 (1993)

    Google Scholar 

  64. Thieme, H. R.: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci. 111, 99–130 (1992)

    Google Scholar 

  65. Thieme, H. R., Castillo-Chavez, C. C.: On the role of variable infectivity in the dynamics of human immunodeficiency virus. In: Mathematical and Statistical Approaches to AIDS Epidemiology, pp. 157–176. Lecture Notes in Biomathematics 83. Berlin Heidelberg New York: Springer (1989)

    Google Scholar 

  66. Van Riper, C. III, Van Riper, S.G., Goff, M. L, Laird, M.: The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56, 327–344 (1986)

    Google Scholar 

  67. Zhou, J.: An epidemiological model with population size dependent incidence. Rocky Mt. J. Math. 24, No.1 (to be published)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Hethcote, H.W. Population size dependent incidence in models for diseases without immunity. J. Math. Biol. 32, 809–834 (1994). https://doi.org/10.1007/BF00168799

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00168799

Key words

Navigation