Skip to main content
Log in

Controlled Motion of a Spherical Robot with Feedback. II

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we develop a model of a controlled spherical robot of combined type moving by displacing the center of mass and by changing the internal gyrostatic momentum, with a feedback that stabilizes given partial solutions for a free system at the final stage of motion. According to the proposed approach, feedback depends on phase variables (current position, velocities) and does not depend on the specific type of trajectory. We present integrals of motion and partial solutions, analyze their stability, and give examples of computer simulations of motion with feedback that demonstrate the efficiency of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bizyaev IA, Borisov AV, Mamaev IS. The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside. Regul Chaotic Dyn. 2014;19(2):198–213.

    Article  MathSciNet  Google Scholar 

  2. Bloch AM, Krishnaprasad PS, Marsden JE, Sanchez de Alvarez G. Stabilization of rigid body dynamics by internal and external torques. Automatica. 1992; 28:745–56.

    Article  MathSciNet  Google Scholar 

  3. Bloch AM, Leonard NE, Marsden JE. Stabilization of mechanical systems using controlled lagrangians. Proceedings of the 36th IEEE Conference on Decision and Control; 1997. p. 2356–61.

  4. Bloch AM, Reyhanoglu M, McClamroch NH. Control and stabilization of nonholonomic dynamic systems. IEEE Trans Autom Control. 1992;37:1746–57.

    Article  MathSciNet  Google Scholar 

  5. Borisov AV, Kilin AA, Mamaev IS. How to control Chaplygin’s sphere using rotors. Regul Chaotic Dyn. 2012;17(3–4):258–72.

    Article  MathSciNet  Google Scholar 

  6. Borisov AV, Kilin AA, Mamaev IS. How to control the Chaplygin ball using rotors. II. Regul Chaotic Dyn. 2013;18(1–2):144–158.

    Article  MathSciNet  Google Scholar 

  7. Borisov AV, Mamaev IS. Two non-holonomic integrable problems tracing back to Chaplygin. Regul Chaotic Dyn. 2012;17(2):191–8.

    Article  MathSciNet  Google Scholar 

  8. Chowdhury AR, Vibhute A, Soh GS, Foong SH, Wood KL. Implementing caterpillar inspired roll control of a spherical robot. Proc IEEE Int Conf Robot Autom. 2017;2017:4167–74.

    Google Scholar 

  9. Ivanova TB, Pivovarova EN. Dynamics and control of a spherical robot with an Axisymmetric pendulum actuator. Rus J Nonlin Dyn. 2013;9(3):507–20. (Russian).

    Google Scholar 

  10. Ivanova TB, Pivovarova EN. Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev How To Control the Chaplygin Ball Using Rotors: 2. Regul Chaotic Dyn. 2014;19(1):140–43.

    Article  MathSciNet  Google Scholar 

  11. Ivanova TB, Kilin AA, Pivovarova EN. 2017. Controlled motion of a spherical robot with feedback. I J Dyn Control Syst. https://doi.org/10.1007/s10883-017-9387-2.

  12. Karavaev YL, Kilin AA. Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform nonholonomic theory and experiments. Proc Steklov Inst Math. 2016;295(1):158–67.

    Article  MathSciNet  Google Scholar 

  13. Karavaev YL, Kilin AA. The dynamics and control of a spherical robot with an internal omniwheel platform. Regul Chaotic Dyn. 2015;20(2):134–52.

    Article  MathSciNet  Google Scholar 

  14. Kayacan E, Bayraktaroglu ZY, Modeling SW. Control of a spherical rolling robot a decoupled dynamics approach. Robotica. 2012;30(4):671–80.

    Article  Google Scholar 

  15. Kayacan E, Kayacan E, Ramon H, Saeys W. Adaptive Neuro-Fuzzy control of a spherical rolling robot using sliding mode control theory-based online learning algorithm. IEEE Trans Cybern. 2013;43(1):170–9.

    Article  Google Scholar 

  16. Kilin AA, Karavaev YL. Experimental research of dynamic of spherical robot of combined type. Rus J Nonlin Dyn. 2015;11(4):721–34. (Russian).

    MATH  Google Scholar 

  17. Kilin AA, Pivovarova EN, Ivanova TB. Spherical robot of combined type: dynamics and control. Regul Chaotic Dyn. 2015;20(6):716–28.

    Article  MathSciNet  Google Scholar 

  18. Korn GA, Korn TM. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. New York: Dover Publications; 2000.

    MATH  Google Scholar 

  19. Kulikov LY. Algebra and number theory. Moscow: Vysshaya Shkola; 1979. (Russian).

    MATH  Google Scholar 

  20. Pivovarova EN, Ivanova TB. Stability analysis of periodic solutions in the problem of the rolling of a ball with a pendulum. Vestnik Udmurtskogo Universiteta Matematika Mekhanika Komp’yuternye Nauki. 2012;4:146–55. (Russian).

    Article  Google Scholar 

  21. Roozegar M, Mahjoob MJ. Modelling and control of a non-holonomic pendulum-driven spherical robot moving on an inclined plane: simulation and experimental results. IET Control Theory Appl. 2017;11(4):541–9.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to A. V. Borisov and I. S. Mamaev for fruitful discussions of the results obtained.

This work is supported by the Russian Science Foundation under grant 14-50-00005 and was performed at the Steklov Mathematical Institute of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Pivovarova.

Appendix

Appendix

We determine the number of real roots of the polynomial (13)

$$P_{4}(\lambda) = a\lambda^{4} + bk_{\vartheta}\lambda^{3} + c\lambda^{2} + dk_{\vartheta}\lambda + e $$

depending on the values of \(k_{\vartheta }\) and \(\omega _{0}\). To do so, we use the Sturm method [19] for finding the number of real roots among all roots of the equation.

Let us call a sequence of signs corresponding to values of the Sturm polynomials, \(f_{0},\ldots , f_{4}\), with a chosen value of argument λ a series of signs:

$$[{\text{sign}}f_{0}(\lambda),{\text{sign}}f_{1}(\lambda),{\text{sign}}f_{2}(\lambda),{\text{sign}}f_{3}(\lambda),{\text{sign}}f_{4}(\lambda)]. $$

According to the Sturm theorem, the number of real roots N is determined as the difference

$$ N=W(\lambda_{-})-W(\lambda_{+}), $$
(24)

where \(\lambda _{-}\) and \(\lambda _{+}\) are, respectively, a negative and a positive value of \(\lambda \) sufficiently large in absolute value, and \(W(\lambda )\) is the number of sign changes in the corresponding series of signs.

It is obvious that

$$\begin{array}{cc} &{\text{sign}}f_{i}(\lambda_{-})=(-1)^{i}\,{\text{sign}}\,A_{i}(k_{\vartheta},\omega_{0}),\\ &{\text{sign}}f_{i}(\lambda_{+})={\text{sign}}\,A_{i}(k_{\vartheta},\omega_{0}), \quad i = 0,\ldots,4, \end{array} $$

where \(A_{i}(k_{\vartheta },\omega _{0})\) are the coefficients at higher degrees of the Sturm polynomials \(f_{i}(\lambda )\). We write them in explicit form (up to multiplication by positive constants):

$$ \begin{array}{c} A_{0}(k_{\vartheta},\omega_{0})= 1, \quad A_{1}(k_{\vartheta},\omega_{0})= 1, \quad A_{2}(k_{\vartheta},\omega_{0})= 3b^{2}k_{\vartheta}^{2}-8ac,\\ A_{3}(k_{\vartheta},\omega_{0})=-3b^{3}d k_{\vartheta}^{4} - k_{\vartheta}^{2}(18a^{2} d^{2}+ 6ab^{2}e-14abcd-b^{2}c^{2})+ 4ac(4ae-c^{2}),\\ A_{4}(k_{\vartheta},\omega_{0})=-4b^{3}d^{3}k_{\vartheta}^{6}-k_{\vartheta}^{4}(27a^{2}d^{4}+ 6ab^{2}d^{2}e -18abcd^{3}+ 27b^{4}e^{2}-\\ -18b^{3}cde-b^{2}c^{2}d^{2}) -4k_{\vartheta}^{2}(48a^{2}bde^{2}-36a^{2}cd^{2}e-36ab^{2}ce^{2}+ 20abc^{2}de+\\ +ac^{3}d^{2}+b^{2}c^{3}e)+ 16ae(4ae-c^{2})^{2}, \end{array} $$
(25)

where \(a, b, c(\omega _{0}), d, e\) are the constants defined above in Eqs. (8) and (14).

We define regions where the coefficients \(A_{i}(k_{\vartheta },\omega _{0}),\, i = 2,\ldots ,4\) have a constant sign (A 0 > 0 and \(A_{1}>0\) do not depend on the values of \(k_{\vartheta }, \omega _{0}\)). These regions are shown as a diagram in Fig. 4 constructed for parameter (22). The boundaries of the regions are defined as roots of the equations \(A_{i}(k_{\vartheta },\omega _{0})= 0,\, i = 2,\ldots ,4\).

Fig. 4
figure 4

Regions where the functions A i (ω 0,k 𝜗 ) (25) on the parameter plane (ω 0,k 𝜗2) have a constant sign. The right panel shows an enlarged fragment of the left picture

For each of these regions we write series of signs with \(\lambda =\lambda _{\pm }\), determine the number of sign changes \(W(\lambda _{-}), W(\lambda _{-})\) and the corresponding number of real roots N (24) (see Table 1).

Table 1 Series of signs and the number of real roots N of Eq. (13)

Thus, three different cases are possible.

  1. 1.

    For parameters (ω 0,k 𝜗 ) from regions I, II, and IV in Fig. 4, Eq. (13) has no real roots. It has as its roots two pairs of conjugate complex numbers with a negative real part. Consequently, for parameters \((\omega _{0}, k_{\vartheta })\) from regions I, II, and IV the family of fixed points (2) of the reduced system (1) with additional control of the form (11) is of stable focus type.

  2. 2.

    For parameters (ω 0,k 𝜗 ) from regions III and V in Fig. 4, the solution of Eq. (13) will be a pair of real negative roots and a pair of conjugate complex numbers with a negative real part. Consequently, for parameters \((\omega _{0}, k_{\vartheta })\) from regions III and V, the family of fixed points (2) of the reduced system (1) with additional control of the form (11) is of stable node-focus type.

  3. 3.

    For parameters (ω 0,k 𝜗 ) from region VI in Fig. 4 (a narrow wedge-shaped region for large values of \(k_{\vartheta }\)), all roots of the polynomial (13) are real (negative) numbers. Consequently, the family of fixed points (2) of the reduced system (1) with additional control of the form (11) is of stable node type.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, T.B., Kilin, A.A. & Pivovarova, E.N. Controlled Motion of a Spherical Robot with Feedback. II. J Dyn Control Syst 25, 1–16 (2019). https://doi.org/10.1007/s10883-017-9390-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-017-9390-7

Keywords

Mathematics Subject Classification (2010)

Navigation