Skip to main content

Advertisement

Log in

Changes in cardiac output and stroke volume as measured by non-invasive CO monitoring in infants with RSV bronchiolitis

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Objectives: The primary aim of the study was to determine the changes, if any, in cardiac output (CO) and stroke volume (SV) in normal infants with RSV bronchiolitis. The secondary aim was to determine whether changes in CO (ΔCO) and SV (ΔSV) are associated with changes in respiratory rate (ΔRR). Methods: Non-invasive CO recordings were obtained within 24 h of admission and discharge. Changes in CO, SV, and HR measurements were compared using paired t-tests. The effect of fluid boluses during the first 24 h (<60 or ≥60 cc/kg) on CO was assessed by 2 way ANOVA with time and group as main effect. The relationship between ΔRR and ΔCO or ΔSV was assessed by linear regression. Data is presented as Mean ± SEM and mean differences with 95 % confidence interval (p < 0.05 considered significant). Results: 15 infants with RSV bronchiolitis were studied. CO (1.31 ± 0.13 to 1.11 ± 0.11 l/min (0.21 [0.04–0.37]) and SV (9.42 ± 1.10 to 7.75 ± 0.83 ml/beat (1.67 [0.21–3.12]) decreased significantly while HR (142.1 ± 4.0 to 145.2 ± 3.1 beats/min 3.0 [−5.3 to 11.3]) was unchanged. SV (p = 0.02) and CO (p = 0.04) significantly decreased only in the 7 infants that received ≥60 cc/kg. ΔRR correlated significantly with ΔCO (r 2 = 0.28, p = 0.04); but not with ΔSV (r 2 = 0.20, p = 0.09). Conclusions: ∆CO was related to ΔSV and not Δ HR. The ∆CO and ΔSV were affected by fluid boluses. ΔRR correlated with ΔCO. Non-invasive CO monitoring can trend CO and SV in infants with bronchiolitis during hospitalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RSV:

Respiratory syncytial viruses

CO:

Cardiac output

SV:

Stroke volume

RR:

Respiratory rate

HR:

Heart rate

MAP:

Mean arterial pressure

References

  1. Shay DK, Holman RC, Roosevelt GE, Clarke MJ, Anderson LJ. Bronchiolitis-associated mortality and estimates of respiratory syncytial virus-associated deaths among US children, 1979–1997. J Infect Dis. 2001;183(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  2. Menchise A. Myocarditis in the setting of RSV bronchiolitis. Fetal Pediatr Pathol. 2011;30(1):64–8.

    Article  PubMed  Google Scholar 

  3. Checchia PA, Appel HJ, Kahn S, Smith FA, Shulman ST, Pahl E, et al. Myocardial injury in children with respiratory syncytial virus infection. Pediatr Crit Care Med. 2000;1(2):146–50.

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong DS, Menahem S. Cardiac arrhythmias as a manifestation of acquired heart disease in association with paediatric respiratory syncitial virus infection. J Paediatr Child Health. 1993;29(4):309–11.

    Article  PubMed  CAS  Google Scholar 

  5. Huang M, Bigos D, Levine M. Ventricular arrhythmia associated with respiratory syncytial viral infection. Pediatr Cardiol. 1998;19(6):498–500.

    Article  PubMed  CAS  Google Scholar 

  6. Njoku DB, Kliegman RM. Atypical extrapulmonary presentations of severe respiratory syncytial virus infection requiring intensive care. Clin Pediatr (Phila). 1993;32(8):455–60.

    Article  CAS  Google Scholar 

  7. Schamberger MS. Cardiac emergencies in children. Pediatr Ann. 1996;25(6):339–44.

    PubMed  CAS  Google Scholar 

  8. Weber MA, Ashworth MT, Risdon RA, Malone M, Burch M, Sebire NJ. Clinicopathological features of paediatric deaths due to myocarditis: an autopsy series. Arch Dis Child. 2008;93(7):594–8.

    Article  PubMed  CAS  Google Scholar 

  9. Klugman D, Berger JT, Sable CA, He J, Khandelwal SG, Slonim AD. Pediatric patients hospitalized with myocarditis: a multi-institutional analysis. Pediatr Cardiol. 2010;31(2):222–8.

    Article  PubMed  Google Scholar 

  10. May LJ, Patton DJ, Fruitman DS. The evolving approach to paediatric myocarditis: a review of the current literature. Cardiol Young. 2011;21(3):241–51.

    Article  PubMed  Google Scholar 

  11. Levin DL, Garg A, Hall LJ, Slogic S, Jarvis JD, Leiter JC. A prospective randomized controlled blinded study of three bronchodilators in infants with respiratory syncytial virus bronchiolitis on mechanical ventilation. Pediatr Crit Care Med. 2008;9(6):598–604.

    Article  PubMed  Google Scholar 

  12. Feltes TF, Hodinka RL, Paridon SM, Wernovsky G, Sondheimer HM. The current state of infection with respiratory syncytial virus in the setting of congenital cardiac malformations. Cardiol Young. 2006;16(Suppl 3):136–43.

    Article  PubMed  Google Scholar 

  13. Lemson J, Nusmeier A, van der Hoeven JG. Advanced hemodynamic monitoring in critically ill children. Pediatrics. Aug 8; 2011 (epublish ahead of print).

  14. Kuhl U, Schultheiss HP. Myocarditis in children. Heart Fail Clin. 2010;6(4):483–496, viii–ix.

    Google Scholar 

  15. Schultz JC, Hilliard AA, Cooper LT Jr, Rihal CS. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc. 2009;84(11):1001–9.

    PubMed  Google Scholar 

  16. Norozi K, Beck C, Osthaus WA, Wille I, Wessel A, Bertram H. Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth. 2008;100(1):88–94.

    Article  PubMed  CAS  Google Scholar 

  17. Tomaske M, Knirsch W, Kretschmar O, Woitzek K, Balmer C, Schmitz A, et al. Cardiac output measurement in children: comparison of Aesculon cardiac output monitor and thermodilution. Br J Anaesth. 2008;100(4):517–20.

    Article  PubMed  CAS  Google Scholar 

  18. Schubert S, Schmitz T, Weiss M, Nagdyman N, Huebler M, Alexi-Meskishvili V, et al. Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: evaluation of transesophageal Doppler and electric velocimetry. J Clin Monit Comput. 2008;22(4):299–307.

    Article  PubMed  Google Scholar 

  19. Marque S, Cariou A, Chiche JD, Squara P. Comparison between Flotrac–Vigileo and bioreactance, a totally noninvasive method for cardiac output monitoring. Crit Care. 2009;13(3):R73.

    Article  PubMed  Google Scholar 

  20. Lemson J, Hofhuizen CM, Schraa O, Settels JJ, Scheffer GJ, van der Hoeven JG. The reliability of continuous noninvasive finger blood pressure measurement in critically ill children. Anesth Analg. 2009;108(3):814–21.

    Article  PubMed  Google Scholar 

  21. Meyer S, Todd D, Shadboldt B. Assessment of portable continuous wave Doppler ultrasound (ultrasonic cardiac output monitor) for cardiac output measurements in neonates. J Paediatr Child Health. 2009;45(7–8):464–8.

    Article  PubMed  Google Scholar 

  22. Dey I, Sprivulis P. Emergency physicians can reliably assess emergency department patient cardiac output using the USCOM continuous wave Doppler cardiac output monitor. Emerg Med Australas. 2005;17(3):193–9.

    Article  PubMed  Google Scholar 

  23. de Waal EE, Wappler F, Buhre WF. Cardiac output monitoring. Curr Opin Anaesthesiol. 2009;22(1):71–7.

    Article  PubMed  Google Scholar 

  24. Osypka MJ, Bernstein DP. Electrophysiologic principles and theory of stroke volume determination by thoracic electrical bioimpedance. AACN Clin Issues. 1999;10(3):385–99.

    Article  PubMed  CAS  Google Scholar 

  25. Toska K, Eriksen M. Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol. 1993;472:501–12.

    PubMed  CAS  Google Scholar 

  26. Curley MA, Harris SK, Fraser KA, Johnson RA, Arnold JH. State Behavioral Scale: a sedation assessment instrument for infants and young children supported on mechanical ventilation. Pediatr Crit Care Med. 2006;7(2):107–14.

    Article  PubMed  Google Scholar 

  27. Heuitt MFE. Normal values and PRISM and TISS scores. In: Toro-Figueroa L, Levin D, Morriss F, editors. Essentials of pediatric intensive care manual. St. Louis: Quality Medical Publishing, Inc; 1992. p. 447.

    Google Scholar 

  28. Garcia CG, Bhore R, Soriano-Fallas A, Trost M, Chason R, Ramilo O, et al. Risk factors in children hospitalized with RSV bronchiolitis versus non-RSV bronchiolitis. Pediatrics. 2010;126(6):e1453–60.

    Article  PubMed  Google Scholar 

  29. Willson DF, Landrigan CP, Horn SD, Smout RJ. Complications in infants hospitalized for bronchiolitis or respiratory syncytial virus pneumonia. J Pediatr. 2003;143(5 Suppl):S142–9.

    Article  PubMed  Google Scholar 

  30. MacDonald NE, Hall CB, Suffin SC, Alexson C, Harris PJ, Manning JA. Respiratory syncytial viral infection in infants with congenital heart disease. N Engl J Med. 1982;307(7):397–400.

    Article  PubMed  CAS  Google Scholar 

  31. Thorburn K, Eisenhut M, Shauq A, Narayanswamy S, Burgess M. Right ventricular function in children with severe respiratory syncytial virus (RSV) bronchiolitis. Minerva Anestesiol. 2011;77(1):46–53.

    PubMed  CAS  Google Scholar 

  32. Moynihan JA, Brown L, Sehra R, Checchia PA. Cardiac troponin I as a predictor of respiratory failure in children hospitalized with respiratory syncytial virus (RSV) infections: a pilot study. Am J Emerg Med. 2003;21(6):479–82.

    Article  PubMed  Google Scholar 

  33. Pahl E, Gidding SS. Echocardiographic assessment of cardiac function during respiratory syncytial virus infection. Pediatrics. 1988;81(6):830–4.

    PubMed  CAS  Google Scholar 

  34. Jurko A Jr. Echocardiographic evaluation of left ventricle postnatal growth in newborns and infants. Bratisl Lek Listy. 2004;105(2):78–85.

    PubMed  Google Scholar 

  35. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–94.

    Article  PubMed  CAS  Google Scholar 

  36. Wong J, Steil GM, Curtis M, Papas A, Zurakowski D, Mason KP. Cardiovascular effects of dexmedetomidine sedation in children. Anesth Analg. 2012;114(1):193–9.

    Article  PubMed  CAS  Google Scholar 

  37. Tomaske M, Knirsch W, Kretschmar O, Balmer C, Woitzek K, Schmitz A, et al. Evaluation of the Aesculon cardiac output monitor by subxiphoidal doppler flow measurement in children with congenital heart defects. Eur J Anaesthesiol. 2009;26(5):412–5.

    Article  PubMed  CAS  Google Scholar 

  38. Steil GM, Eckstein OS, Caplow J, Agus MS, Walsh BK, Wong J. Non-invasive cardiac output and oxygen delivery measurement in an infant with critical anemia. J Clin Monit Comput. 2011;25(2):113–9.

    Article  PubMed  Google Scholar 

  39. Gazit AZ, Cooper DS. Emerging technologies. Pediatr Crit Care Med. 2011;12(suppl):S55.

    Article  PubMed  Google Scholar 

  40. Halley GC, Tibby S. Hemodynamic monitoring. In: Roger’s textbook of pediatric intensive care, 4th edn. Philadelphia: LWW; 2008. p. 1048–9.

Download references

Acknowledgments

The authors would like to express their gratitude to Melissa Whalen BS for editorial and administrative assistance and Mary K. Stone, MS MPH for data compilation.

Conflict of interest

Jackson Wong has a Clinical Trial Agreement with Cardiotronic Inc., La Jolla, CA. Cardiotronic Inc. provided funding for this investigator’s initiative study. The research proposal, design, conduct of the study, data analysis and manuscript were performed solely by the investigators at Children’s Hospital Boston and the co-authors do not report a conflict of interest. No author(s) received an honorarium or grant to write this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackson Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caplow, J., McBride, S.C., Steil, G.M. et al. Changes in cardiac output and stroke volume as measured by non-invasive CO monitoring in infants with RSV bronchiolitis. J Clin Monit Comput 26, 197–205 (2012). https://doi.org/10.1007/s10877-012-9361-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-012-9361-1

Keywords

Navigation