Skip to main content

Advertisement

Log in

Surface Electrodes Are Not Sufficient To Detect Neurotonic Discharges: Observations In A Porcine Model And Clinical Review Of Deltoid Electromyographic Monitoring Using Multiple Electrodes

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Objective

In order to define the preferred electromyographic monitoring method during spine surgery, (1) a porcine model of neurotonic generation after lumbar root compression was developed and (2) intraoperative use of deltoid muscle intramuscular needle, subdermal needle, and surface electrodes was retrospectively reviewed.

Methods

In pigs, an array of intramuscular needle, subdermal needle, and surface electrode derivations was differentially amplified at identical gain and filter settings. Nerve root compression generated neurotonic discharges whose amplitudes were compared at each derivation. Clinically, 25 deltoid muscles in 13 patients were simultaneously monitored (during cervical spine surgery at the C4–C5 level) with surface, subdermal needle, and intramuscular needle electrode pairs, differentially amplified at identical gain and filter settings. Non-repeating neurotonic discharges were assigned, by amplitude and morphology, to best derivation (intramuscular, subdermal, surface or combination); coincident amplitudes were measured at the maximum deflection among the three derivations. Actual voltage detected between clinical methods was analyzed with Friedman’s test and any detection versus none by general estimating equations(GEE) using SAS. The advantage of two needles over one in detection of any voltage was assessed using McNemar’s test.

Results

Compressed porcine lumbar roots generated neurotonics which were identifiable at intramuscular sites only. Clinically, 31 neurotonics were identified: 20/31 at intramuscular, 5/31 at subdermal, and 6/31 equally well at intramuscular and subdermal derivations. Intramuscular detected neurotonics better than subdermal derivations (z = 2.9, P < .004). No voltage was recorded at the surface in 16/31 neurotonics. For detection of any voltage, intramuscular was better than subdermal (z = −1.5, P = .04) or surface electrodes (z = −2.7, P < .001).

Conclusions

Electromyographic moni- toring of spine surgery should not be done by surface electrodes. Because sensitive neurotonic detection requires near field recording, intramuscular electrodes are preferred. Monitoring of a myotome at particularly increased risk may suggest multiple intramuscular electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Owen JH, Kostuik JP, Gornet M, Petr M, Skelly J, Smoes C, Szymanski J, Townes J, Wolfe F. The use of mechanically elicited electromyograms to protect nerve roots during surgery for spinal degeneration. Spine 1994; 19: 1704–1710

    Article  PubMed  CAS  Google Scholar 

  2. Beatty RM, McGuire P, Moroney JM, Holladay FP. Continuous intraoperative electromyographic recording during spinal surgery. J Neurosurg 1995; 82: 401–405

    Google Scholar 

  3. Holland NR, Kostuik JP. Continuous electromyographic monitoring to detect nerve root injury during thoracolumbar scoliosis surgery. Spine 1997; 22: 2547–2550

    Google Scholar 

  4. Haig AJ, Gelblum JB, Rechtien JJ, Gitter AJ. Technology assessment: the use of surface emg in the diagnosis and treatment of nerve and muscle disorders. Muscle Nerve 1996; 19: 392–395

    Article  PubMed  CAS  Google Scholar 

  5. Pullman SL, Goodin DS, Marquinez AI, Tabbal S, Rubin M. Clinical utility of surface emg. Neurology 2000; 55: 171–177

    PubMed  CAS  Google Scholar 

  6. Toleikis RJ, Skelly JP, Carlvin AO, Toleikis SC, Bernard TN, Burkus JK, Burr ME, Dorchak JD, Goldman MS, Walsh TR. The usefulness of electrical stimulation for assessing pedicle screw placements. J Spinal Disorder 2000; 13: 283–289

    Article  CAS  Google Scholar 

  7. Toleikis RJ. Neurophysiological monitoring during pedicle screw placement. In: Deletis, V, Shils, JL, eds. Neurophysiology in neurosurgery: a modern intraoperative approach. Academic Press, San Diego, 2002: 231–264

  8. Calancie B, Lebwohl N, Madsen P, Klose JK. Intraoperative evoked EMG monitoring in an animal model. Spine 1992; 17: 1229–1235

    Article  PubMed  CAS  Google Scholar 

  9. Maguire J, Wallace S, Madiga R, Leppanen R, Draper V. Evaluation of intrapedicular screw position using intraoperative evoked electromyography. Spine 1995; 20: 1068–1074

    Article  PubMed  CAS  Google Scholar 

  10. Darden BV, Wood KE, Hatley MK, Owen JH, Kostuik JP. Evaluation of pedicle screw insertion monitored by intraoperative evoked electromyography. J Spinal Disorders 1996; 9: 8–16

    Google Scholar 

  11. Clements DH, Morledge DE, Martin WH, Betz RR. Evoked and spontaneous electromyography to evaluate lumbosacral pedicle screw placement. Spine 1996; 21: 600–604

    Article  PubMed  CAS  Google Scholar 

  12. Holland NR, Lukaczyk TA, Riley LH, Kostuik JP. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Spine 1998; 23: 224–227

    Article  PubMed  CAS  Google Scholar 

  13. Bose B, Wierzbowski LR, Sestokas AK. Neurophysiologic monitoring of spinal nerve root function during instrumented posterior lumbar spine surgery. Spine 2002; 27: 1444–1450

    Article  PubMed  Google Scholar 

  14. Leppanen RE. Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. J Clin Monit Comput 2005; 19: 437–461

    Article  PubMed  Google Scholar 

  15. Matthiass HH, Heine J. The surgical reduction of spondylolisthesis. Clin Orthop Relat Res 1986; 203: 34–44

    PubMed  Google Scholar 

  16. Bradford DS, Boachie-Adjei O. Treatment of severe spondylolisthesis by anterior and posterior reduction and stabilization: a long term follow-up study. J Bone Joint Surg Am 1990; 72: 1060–1066

    PubMed  CAS  Google Scholar 

  17. Dick WT, Schnebel B. Severe spondylolisthesis: reduction and internal fixation. Clin Orthop Relat Res 1988; 232: 70–79

    PubMed  Google Scholar 

  18. Molinari RW, Bridwell KH, Lenke LG, Ungacta FF, Riew KD. Complications in the surgical treatment of pediatric high-grade, ischemic dysplastic spondylolisthesis: a comparison of three surgical approaches. Spine 1999; 24: 1701–1711

    Article  PubMed  CAS  Google Scholar 

  19. Petraco DM, Spivak JM, Cappadona JG, Kummer FJ, Neuwirth MG. An anatomic evaluation of L5 nerve stretch in spondylolisthesis reduction. Spine 1996; 21: 1133–1138

    Article  PubMed  CAS  Google Scholar 

  20. Keegan JJ. The cause of dissociated motor loss in the upper extremity with cervical spondylosis. J Neurosurg 1965; 23: 528–536

    PubMed  CAS  Google Scholar 

  21. Yonenobu K, Hosono N, Iwasaki M, Asano M, Ono K. Neurologic complications of surgery for cervical compression myelopathy. Spine 1991; 16: 1277–1282

    Article  PubMed  CAS  Google Scholar 

  22. Chiles BW, Leonard MA, Choudhri HF, Cooper PR. Cervical spondylotic myelopathy: pattern of neurological deficit and recovery after anterior cervical decompression. Neurosurgery 1999; 44: 762–769

    Article  PubMed  Google Scholar 

  23. Satomi K, Ogawa J, Ishii Y, Hirabayashi K. Short-term complications and long-term results of expansive open-door laminoplasty for cervical stenotic myelopathy. Spine J 2001; 1: 26–30.

    Google Scholar 

  24. Minoda Y, Nakamura H, Konishi S. Palsy of C5 nerve root after midsagittal splitting laminoplasty of the cervical spine. Spine 2003; 28: 1123–1127

    Article  PubMed  Google Scholar 

  25. Rao RD, Gourab K, David KS. Current concepts review: operative treatment of cervical spondylotic myelopathy. J Bone Joint Surg 2006; 88: 1619–1640

    Article  PubMed  Google Scholar 

  26. Kazuo K, Hashiguchi A, Kato Y, Kojima T, Imajyo Y, Taguchi T. Investigation of motor dominant C5 paralysis after laminoplasty from the results of evoked spinal cord responses. J Spinal Disord Tech 2006; 19: 358–361

    Article  Google Scholar 

  27. Greiner-Perth R, ElSaghir H, Bohm H, El-Meshtawy M. The incidence of C5–C6 radiculopathy as a complication of extensive cervical decompression: own results and review of literature. Neurosurg Rev 2005; 28: 137–142

    Article  PubMed  Google Scholar 

  28. Sasai K, Saito T, Akagi S, Ohnari H, Lida H. Preventing C5 palsy after laminoplasty. Spine 2003; 28: 1972–1977

    Article  PubMed  Google Scholar 

  29. Fan D, Schwartz DM, Vaccaro AR, Hilibrand AS, Albert TJ. Intraoperative neurophysiologic detection of iatrogenic C5 nerve root injury during laminectomy for cervical compression myelopathy. Spine 2002; 27: 2499–2502

    Article  PubMed  Google Scholar 

  30. Daube JR, Harper CM. Surgical monitoring of cranial and peripheral nerves. In: Desmedt JE, ed, Neuromonitoring in surgery. New York: Elsevier Science Publishers, 1989: 115–138

    Google Scholar 

  31. Isley MR, Pearlman RC, Wadsworth JS. Recent advances in intraoperative neuromonitoring of spinal cord function: pedicle screw stimulation techniques. Am J Technol. 1997; 37: 93–126

    Google Scholar 

  32. Goldman DE. Responses of nerve fibers to mechanical forces. In: Autrum H, ed, Handbook of sensory physiology. New York: Springer-Verlag, 1971: 340–344

    Google Scholar 

  33. Wall PD, Waxman S, Basbaum AI. Ongoing activity in peripheral nerve: injury discharge. Exp Neurol 1974; 45: 576–589

    Article  PubMed  CAS  Google Scholar 

  34. Adrian ED. Effects of injury on mammalian nerve fibres. Proc R Soc Lond B Biol Sci 1930; 106: 596–618

    Google Scholar 

  35. Kugelberg E. “Injury activity” and “trigger zones” in human nerves. Brain 1946; 69: 310–324

    Article  Google Scholar 

  36. Julian FJ, Goldman DB. The effects of mechanical stimulation on some electrical properties of axons. J Gen Physiol 1962; 46: 297–313

    Article  PubMed  CAS  Google Scholar 

  37. Rosenblueth A, Buylla R, Ramos J. The responses of axons to mechanical stimuli. Acta Physiol Lat Am 1953; 3: 204–215

    PubMed  CAS  Google Scholar 

  38. Kugelberg E, Skoglund CR. Responses of spike motor units to electrical stimulation. J Neurophysiol 1946; 9: 391–398

    Google Scholar 

  39. Blair E, Erlanger J. A comparison of the characteristics of axons through their individual electrical responses. Am J Physiol 1933; 106: 524–564

    Google Scholar 

  40. Gregory C, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 2005; 85: 358–364

    PubMed  Google Scholar 

  41. Henneman E, Somjen G, Carpenter BO. Functional significance in cell size in spinal motor neurons. J Neurophysiol 1965; 28: 560–580

    PubMed  CAS  Google Scholar 

  42. Bostock H. Mechanisms of accommodation, adaptation in myelinated axons. In: Waxman SG, Kocsis JD, Stys PK, ed, The axon. Oxford University Press, USA, 1995: 311–327

    Google Scholar 

  43. Kugelberg E. Accommodation in human nerves. Acta Physiol Scand 1944; 8(Suppl 24): 1–105

    Google Scholar 

  44. Howe JF, Loeser JD, Calvin WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 1977; 3: 25–41

    Article  PubMed  CAS  Google Scholar 

  45. Romstock J, Strauss C, Fahlbusch R. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J. Neurosurg 2000; 93: 586–593

    Article  PubMed  CAS  Google Scholar 

  46. Buchthal F. The general concept of the motor unit. Nerv Ment Dis 1961; 38: 3–30

    Google Scholar 

  47. Fuglevand AJ, Winter DA, Patla AE, Stashuk D. Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern 1992; 67: 143–153

    Article  PubMed  CAS  Google Scholar 

  48. Kuiken TA, Lowery MM, Stoykov NS. The effect of subcutaneous fat on myoelectric signal amplitude and cross-talk. Prosthet Orthot Int 2003; 27:48–54

    PubMed  CAS  Google Scholar 

  49. Dumitru D, Stegeman DF, Zwarts MJ. Electrical sources and volume conduction. In: Dumitru D, Amato AA, Zwarts MJ, ed, Electrodiagnostic medicine, second edition. Hanley & Belfus, Philadelphia, 2002: 43

    Google Scholar 

  50. Schwartz MS, Stalberg E, Schiller HH, Thiele B. The reinnervated motor unit in man: a single-fiber EMG multielectrode investigation. J Neurol Sci 1976; 27:303–312

    Article  PubMed  CAS  Google Scholar 

  51. Stahlberg EV, Trontelj J. Single-fiber electromyography: studies in healthy and diseased muscle. Raven Press, New York, 1994

    Google Scholar 

  52. King JC. Basic electricity primer. In: Dumitru, D, Amato, AA, Zwarts, MJ, eds, Electrodiagnostic medicine, 2nd edn. Hanley & Belfus, Philadelphia, 2002: 106–107

  53. de Weerd JPC. Volume conduction and electromyography. In: Notermans SL, ed, Current practice of clinical electromyography. New York: Elsevier, 1984; 9–28

    Google Scholar 

  54. Stalberg E, Andreassen S, Falck B, Lang H, Rosenfalck A, Trojaborg W. Quantitative analysis of individual motor unit potentials: a proposition for standardized terminology and criteria for measurement. J Clin Neurophysiol 1986; 3: 313–348

    Article  PubMed  CAS  Google Scholar 

  55. Dumitru D, Zwarts MJ. Instrumentation. In: Dumitru D, Amato AA, Zwarts MJ, eds, Electrodiagnostic medicine, second edition. Philadelphia: Hanley & Belfus, 2002:72–73

    Google Scholar 

  56. Van Dijk JG, Tjonatsien A, Vanderkamp R. CMAP variability as a function of electrode site and size. Muscle Nerve 1995; 18: 68–73

    Article  PubMed  Google Scholar 

  57. Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM. Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 2005; 98: 120–131

    Article  PubMed  Google Scholar 

  58. Türker KS. Electromyography: some methodological problems and issues. Phys Ther 1993; 73: 698–710

    PubMed  Google Scholar 

  59. De Luca CJ, Merletti R. Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalogr Clin Neurophysiol 1988; 69: 568–575

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank our neuromonitoring technologists: Joyce Wiberg, REEG; Tiffany Robbe, REEG, CNIM; Cynthia Schmidt, REEG, CNIM; Michelle Vrieze, CNIM; Leah Collon, CNIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley A. Skinner MD.

Additional information

Skinner SA, Transfeldt EE, Savik K. Surface electrodes are not sufficient to detect neurotonic discharges: observations in a porcine model and clinical review of deltoid electromyographic monitoring using multiple electrodes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, S.A., Transfeldt, E.E. & Savik, K. Surface Electrodes Are Not Sufficient To Detect Neurotonic Discharges: Observations In A Porcine Model And Clinical Review Of Deltoid Electromyographic Monitoring Using Multiple Electrodes. J Clin Monit Comput 22, 131–139 (2008). https://doi.org/10.1007/s10877-008-9114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-008-9114-3

Keywords

Navigation