Skip to main content

Abstract

During lumbosacral spinal fusion procedures, the overarching goal is to mitigate the risk of new or worsened neurologic deficits secondary to iatrogenic nerve root or lumbosacral plexus injury. One objective is to avoid direct mechanical irritation or insult to neural elements using spontaneous and triggered electromyography (EMG) to detect proximity of surgical instruments and implants. While an 8-mA threshold for pedicle screw testing remains the most prudent alert criterion, it should be adjusted based on patient factors such as bone porosity. A second objective is to alert the surgeon to possible evolving dysfunction. EMG and somatosensory-evoked potentials (SSEPs) have historically shown relatively weak sensitivity in diagnosing spinal nerve root dysfunction during surgery, while motor-evoked potentials (MEPs) have demonstrated excellent accuracy when appropriate alert criteria and optimized anesthetic regimens are utilized. IONM professionals should be aware of the strengths and limitations of each test modality, and, based on diagnosis, procedure, and patient factors, advocate for a multimodality approach to maximize diagnostic accuracy and potential therapeutic impact of IONM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epstein NE. Many intraoperative monitoring modalities have been developed to limit injury during extreme lateral interbody fusion (XLIF/MIS XLIF): does that mean XLIF/MIS XLIF are unsafe? Surg Neurol Int. 2019;10:233.

    Article  PubMed  Google Scholar 

  2. Lieberman JA, Lyon R, Jasiukaitis P, Berven SH, Burch S, Feiner J. The reliability of motor evoked potentials to predict dorsiflexion injuries during lumbosacral deformity surgery: importance of multiple myotomal monitoring. Spine J. 2019;19(3):377–85.

    Article  PubMed  Google Scholar 

  3. de Kunder SL, van Kuijk SMJ, Rijkers K, Caelers IJMH, van Hemert WLW, de Bie RA, et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J. 2017;17(11):1712–21.

    Article  PubMed  Google Scholar 

  4. Wilent WB, Tesdahl EA, Harrop JS, Welch WC, Cannestra AF, Poelstra KA, et al. Utility of motor evoked potentials to diagnose and reduce lower extremity motor nerve root injuries during 4,386 extradural posterior lumbosacral spine procedures. Spine J. 2019;20(2):191–8.

    Article  PubMed  Google Scholar 

  5. Isley MR, Zhang X-F, Balzer JR, Leppanen RE. Current trends in pedicle screw stimulation techniques: lumbosacral, thoracic, and cervical levels. Neurodiagn J. 2012;52(2):100–75.

    PubMed  Google Scholar 

  6. Leppanen RE. Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19(6):437–61.

    Article  PubMed  Google Scholar 

  7. MacDonald DB, Dong C, Quatrale R, Sala F, Skinner S, Soto F, et al. Recommendations of the International Society of Intraoperative Neurophysiology for intraoperative somatosensory evoked potentials. Clin Neurophysiol. 2019;130(1):161–79.

    Article  CAS  PubMed  Google Scholar 

  8. Macdonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring—a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124(12):2291–316.

    Article  CAS  PubMed  Google Scholar 

  9. Monitoring the nervous system for anesthesiologists and other health care professionals. 2nd ed. Springer; 2011.

    Google Scholar 

  10. Schirmer CM, Shils JL, Arle JE, Cosgrove GR, Dempsey PK, Tarlov E, et al. Heuristic map of myotomal innervation in humans using direct intraoperative nerve root stimulation. J Neurosurg Spine. 2011;15(1):64–70.

    Article  PubMed  Google Scholar 

  11. Riley MR, Doan AT, Vogel RW, Aguirre AO, Pieri KS, Scheid EH. Use of motor evoked potentials during lateral lumbar interbody fusion reduces postoperative deficits. Spine J. 2018;18(10):1763–78.

    Article  PubMed  Google Scholar 

  12. Block J, Silverstein JW, Ball HT, Mermelstein LE, DeWal HS, Madhok R, et al. Motor evoked potentials for femoral nerve protection in transpsoas lateral access surgery of the spine. Neurodiagn J. 2015;55(1):36–45.

    Article  PubMed  Google Scholar 

  13. Alluri RK, Vaishnav AS, Sivaganesan A, Ricci L, Sheha E, Qureshi SA. Multimodality intraoperative neuromonitoring in lateral lumbar interbody fusion: a review of alerts in 628 patients. Global Spine J. 2021;21925682211000320.

    Google Scholar 

  14. Chaudhary K, Speights K, McGuire K, White AP. Trans-cranial motor evoked potential detection of femoral nerve injury in trans-psoas lateral lumbar interbody fusion. J Clin Monit Comput. 2015;29(5):549–54.

    Article  PubMed  Google Scholar 

  15. Silverstein JW, Block J, Smith ML, Bomback DA, Sanderson S, Paul J, et al. Femoral nerve neuromonitoring for lateral lumbar interbody fusion surgery. Spine J. 2021;22(2):296–304.

    Article  PubMed  Google Scholar 

  16. Yaylali I, Ju H, Yoo J, Ching A, Hart R. Intraoperative neurophysiological monitoring in anterior lumbar interbody fusion surgery. J Clin Neurophysiol. 2014;31(4):352–5.

    Article  PubMed  Google Scholar 

  17. Kaliya-Perumal A-K, Charng J-R, Niu C-C, Tsai T-T, Lai P-L, Chen L-H, et al. Intraoperative electromyographic monitoring to optimize safe lumbar pedicle screw placement—a retrospective analysis. BMC Musculoskelet Disord. 2017;18(1):229.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Troni W, Benech CA, Perez R, Tealdi S, Berardino M, Benech F. Focal hole versus screw stimulation to prevent false negative results in detecting pedicle breaches during spinal instrumentation. Clin Neurophysiol. 2019;130(4):573–81.

    Article  PubMed  Google Scholar 

  19. Raynor BL, Lenke LG, Bridwell KH, Taylor BA, Padberg AM. Correlation between low triggered electromyographic thresholds and lumbar pedicle screw malposition: analysis of 4857 screws. Spine (Phila Pa 1976). 2007;32(24):2673–8.

    Article  PubMed  Google Scholar 

  20. Donohue ML, Swaminathan V, Gilbert JL, Fox CW, Smale J, Moquin RR, et al. Intraoperative neuromonitoring: can the results of direct stimulation of titanium-alloy pedicle screws in the thoracic spine be trusted? J Clin Neurophysiol. 2012;29(6):502–8.

    Article  PubMed  Google Scholar 

  21. Melachuri SR, Melachuri MK, Mina A, Anetakis K, Crammond DJ, Balzer JR, et al. Optimal “low” pedicle screw stimulation threshold to predict new postoperative lower-extremity neurologic deficits during lumbar spinal fusions. World Neurosurg. 2021;151:e250–6.

    Article  PubMed  Google Scholar 

  22. Holland NR, Lukaczyk TA, Riley LH 3rd, Kostuik JP. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine (Phila Pa 1976). 1998;23(2):224–7.

    Article  CAS  PubMed  Google Scholar 

  23. Minahan RE, Riley LH 3rd, Lukaczyk T, Cohen DB, Kostuik JP. The effect of neuromuscular blockade on pedicle screw stimulation thresholds. Spine (Phila Pa 1976). 2000;25(19):2526–30.

    Article  CAS  PubMed  Google Scholar 

  24. Romstöck J, Strauss C, Fahlbusch R. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg. 2000;93(4):586–93.

    Article  PubMed  Google Scholar 

  25. Melachuri SR, Kaur J, Melachuri MK, Ninaci D, Crammond DJ, Balzer JR, et al. The diagnostic accuracy of somatosensory evoked potentials in evaluating neurological deficits during 1057 lumbar interbody fusions. J Clin Neurosci. 2019;61:78–83.

    Article  PubMed  Google Scholar 

  26. Hamilton DK, Smith JS, Sansur CA, Glassman SD, Ames CP, Berven SH, et al. Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine (Phila Pa 1976). 2011;36(15):1218–28.

    Article  PubMed  Google Scholar 

  27. Silverstein J, Mermelstein L, DeWal H, Basra S. Saphenous nerve somatosensory evoked potentials: a novel technique to monitor the femoral nerve during transpsoas lumbar lateral interbody fusion. Spine (Phila Pa 1976). 2014;39(15):1254–60.

    Article  PubMed  Google Scholar 

  28. Wilent WB, Tesdahl EA, Trott JT, Tassone S, Harrop JS, Klineberg EO, et al. Impact of inhalational anesthetic agents on the baseline monitorability of motor evoked potentials (MEPs) during spine surgery: a review of 22,755 cervical and lumbar procedures. Spine J. 2021;21(11):1839–46.

    Article  PubMed  Google Scholar 

  29. Gonzalez AA, Cheongsiatmoy J, Shilian P, Parikh P. Comparison of transcranial motor evoked potential amplitude responses between intramuscular and subcutaneous needles in proximal thigh muscle. J Clin Neurophysiol. 2018;35(5):431–5.

    Article  PubMed  Google Scholar 

  30. Tamkus A, Rice KS, Hoffman G. Transcranial motor evoked potential alarm criteria to predict foot drop injury during lumbosacral surgery. Spine (Phila Pa 1976). 2018;43(4):E227–33.

    Article  PubMed  Google Scholar 

  31. Sutter MA, Eggspuehler A, Grob D, Porchet F, Jeszenszky D, Dvorak J. Multimodal intraoperative monitoring (MIOM) during 409 lumbosacral surgical procedures in 409 patients. Eur Spine J. 2007;16(Suppl 2):S221–8.

    Article  PubMed  Google Scholar 

  32. Bhalodia VM, Schwartz DM, Sestokas AK, Bloomgarden G, Arkins T, Tomak P, et al. Efficacy of intraoperative monitoring of transcranial electrical stimulation-induced motor evoked potentials and spontaneous electromyography activity to identify acute-versus delayed-onset C-5 nerve root palsy during cervical spine surgery: clinical article. J Neurosurg Spine. 2013;19(4):395–402.

    Article  PubMed  Google Scholar 

  33. Wilent WB, Rhee JM, Harrop JS, Epplin-Zapf T, Bose M, Tesdahl EA, et al. Therapeutic impact of traction release after C5 nerve root motor evoked potential (MEP) alerts in cervical spine surgery. Clin Spine Surg. 2020;33(10):E442–7.

    Article  PubMed  Google Scholar 

  34. Wilent WB, Trott JM, Sestokas AK. Roadmap for motor evoked potential (MEP) monitoring for patients undergoing lumbar and lumbosacral spinal fusion procedures. Neurodiagn J. 2021;61(1):27–36.

    Article  PubMed  Google Scholar 

  35. Sloan TB, Toleikis JR, Toleikis SC, Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J Clin Monit Comput. 2015;29(1):77–85.

    Article  PubMed  Google Scholar 

  36. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2–18.

    PubMed  PubMed Central  Google Scholar 

  37. Wood KB, Devine J, Fischer D, Dettori JR, Janssen M. Vascular injury in elective anterior lumbosacral surgery. Spine (Phila Pa 1976). 2010;35(9 Suppl):S66–75.

    Article  PubMed  Google Scholar 

  38. Nair MN, Ramakrishna R, Slimp J, Kinney G, Chesnut RM. Left iliac artery injury during anterior lumbar spine surgery diagnosed by intraoperative neurophysiological monitoring. Eur Spine J. 2010;19(Suppl 2):S203–5.

    Article  PubMed  Google Scholar 

  39. Isley MR, Zhang X-F, Smith RC, Cohen MJ. Intraoperative neuromonitoring detects thrombotic occlusion of the left common iliac arterial bifurcation after anterior lumbar interbody fusion: case report. J Spinal Disord Tech. 2007;20(1):104–8.

    Article  PubMed  Google Scholar 

  40. Woods K, Fonseca A, Miller LE. Two-year outcomes from a single surgeon’s learning curve experience of oblique lateral interbody fusion without intraoperative neuromonitoring. Cureus. 2017;9(12):e1980.

    PubMed  PubMed Central  Google Scholar 

  41. Lee T-K, Kim J-Y, Han M-S, Lee J-K, Moon BJ. Neurologic deficit due to vertebral body osteophytes after oblique lumbar interbody fusion: a case report. Medicine (Baltimore). 2021;100(50):e28095.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bryan Wilent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilent, W.B., Trott, J., Epplin-Zapf, T., Sestokas, A.K. (2023). IONM During Lumbosacral Spinal Fusion Procedures. In: Seubert, C.N., Balzer, J.R. (eds) Koht, Sloan, Toleikis's Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-031-09719-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09719-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09718-8

  • Online ISBN: 978-3-031-09719-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics