Skip to main content
Log in

Metallic Nanoparticles Biosynthesized by Phenolic-Rich Extracts: Interaction, Characterization and Application

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Biological extracts have great potential to be used in the synthesis of metallic nanoparticles (M-NPs) due to their variety of biomolecules and different functional groups found in their structure, which act as potential reducing and stabilizing agents. Moreover, is understood as a safer alternative for the environment and health, as it aims to mitigate the use of substance with high toxicity, becoming a more environmentally friendly proposal. In this context, this review emphasizes the influence of the composition of plant extracts, especially extracts that present in their composition biomolecules such as flavonoids, for the synthesis of metallic nanoparticles, focusing on the interactions of the different functional groups found in the structures of flavonoids with metal precursors, to understand the mechanisms of synthesis reaction of metallic nanoparticles. In addition, the use of characterization techniques such as electrochemical, vibrational, morphological and structural is addressed, aiming to understand the potential of biological extracts as reducing and stabilizing agents, as a function of the composition of the extract, and for characterizations of the physicochemical properties of synthesized nanomaterials. Furthermore, the use of metallic nanoparticles as catalysts in the treatment of pollutants, development of electrochemical sensors and biological applications is briefly reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J Adv Res. https://doi.org/10.1016/j.jare.2015.02.007.

    Article  PubMed Central  PubMed  Google Scholar 

  2. A.L.D. Róz, F.d.L. Leite, M. Ferreira, O.N.d. Oliveira Junior, Nanoestruturas: princípios e aplicações, 1aed. (Elsevir, Rio de Janeiro, 2015).

  3. S. Kanchi and S. Ahmed, Green Metal Nanoparticles: Synthesis, Characterization and their Applications (Wiley, Hoboken, 2018).

    Book  Google Scholar 

  4. A. L. M. Terra, N. D. Cruz, A. S. A. Henrard, J. A. V. Costa, and M. G. D. Morais (2019). Ind Biotechnol. https://doi.org/10.1089/ind.2018.0022.

    Article  Google Scholar 

  5. N. P. Anh, P. N. M. Quang, D. T. Van, L. T. C. Van, D. N. Linh, N. V. Minh, V. P. Tai, and N. Tri (2019). J. Biochem. Technol. 10, 16–25.

    CAS  Google Scholar 

  6. V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina (2014). Acta Nat. 6, 1–10.

    Google Scholar 

  7. M. R. Bindhu and M. Umadevi (2015). Spectrochim Acta A. https://doi.org/10.1016/j.saa.2014.07.045.

    Article  Google Scholar 

  8. C. S. Raota, A. F. Cerbaro, M. Salvador, A. P. L. Delamare, S. Echeverrigaray, J. D. Crespo, T. B. da Zilva, and M. Giovanela (2019). J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103383.

    Article  Google Scholar 

  9. A. A. S. A. Sukmaningsih, S. Permana, D. J. D. H. Santjojo, A. Y. P. Wardoyo, and S. B. Sumitro (2018). Rasayan J Chem. https://doi.org/10.31788/RJC.2018.1133047.

    Article  Google Scholar 

  10. B. Kumar, K. S. Vizuete, V. Sharma, A. Debut, and L. Cumbal (2019). Vacuum. https://doi.org/10.1016/j.vacuum.2018.11.027.

    Article  Google Scholar 

  11. L. Wang, Y. Wu, J. Xie, S. Wu, and Z. Wu (2018). Mater Sci Eng C. https://doi.org/10.1016/j.msec.2018.01.003.

    Article  Google Scholar 

  12. L. Rotimi, M. O. Ojemaye, O. O. Okoh, A. Sadimenko, and A. I. Okoh (2019). Green Chem Lett Rev. https://doi.org/10.1080/17518253.2019.1569730.

    Article  Google Scholar 

  13. A. Shah, K. Ahmad, A. T. Khalil, F. Amin, G. Lutfullah, K. Khan, G. Shah, and A. Ahmad (2019). Mater Res Express. https://doi.org/10.1088/2053-1591/ab5143.

    Article  Google Scholar 

  14. C. L. Keat, A. Aziz, A. M. Eid, and N. A. Elmarzugi (2015). Bioresourc Bioprocess. https://doi.org/10.1186/s40643-015-0076-2.

    Article  Google Scholar 

  15. M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern (2015). Materials. https://doi.org/10.3390/ma8115377.

    Article  PubMed Central  PubMed  Google Scholar 

  16. M. G. Heinemann, C. H. Rosa, G. R. Rosa, and D. Dias (2021). Trends Environ Anal Chem. https://doi.org/10.1016/j.teac.2021.e00129.

    Article  Google Scholar 

  17. N. Pantidos and L. E. Horsfall (2014). J Nanomed Nanotechnol. https://doi.org/10.4172/2157-7439.1000233.

    Article  Google Scholar 

  18. I. Ocsoy, D. Tasdemir, S. Mazicioglu, C. Celik, A. Katı, and F. Ulgen (2018). Mater Lett. https://doi.org/10.1016/j.matlet.2017.10.068.

    Article  Google Scholar 

  19. A. Demirbas, K. Buyukbezirci, C. Celik, E. Kislakci, Z. Karaagac, E. Gokturk, A. Kati, B. Cimen, V. Yilmaz, and I. Ocsoy (2019). ACS Omega. https://doi.org/10.1021/acsomega.9b02469.

    Article  PubMed Central  PubMed  Google Scholar 

  20. A. Demirbas, B. A. Welt, and I. Ocsoy (2016). Mater Lett. https://doi.org/10.1016/j.matlet.2016.05.056.

    Article  Google Scholar 

  21. K. Vijayaraghavan and T. Ashokkumar (2017). J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.09.026.

    Article  Google Scholar 

  22. J. B. Bavaresco, M. Bandeira, C. S. Raota, J. S. Crespo, and M. Giovanela (2020). Sci Ind. https://doi.org/10.18226/23185279.v8iss1p39.

    Article  Google Scholar 

  23. T. Ahmad, M. A. Bustam, M. Irfan, M. Moniruzzaman, H. M. A. Asghar, and S. Bhattacharjee (2019). Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1787.

    Article  PubMed  Google Scholar 

  24. M. P. Das, J. R. Livingstone, P. Veluswamy, and J. Das (2018). J Food Drug Anal. https://doi.org/10.1016/j.jfda.2017.07.014.

    Article  PubMed Central  PubMed  Google Scholar 

  25. J. Rajkumari, C. M. Magdalane, B. Siddhardha, J. Madhavan, G. Ramalingam, N. A. Al-Dhabi, M. V. Arasu, A. K. M. Ghilan, V. Duraipandiayan, and K. Kaviyarasu (2019). J Photochem Photobiol B. https://doi.org/10.1016/j.jphotobiol.2019.111667.

    Article  PubMed  Google Scholar 

  26. M. A. Martins and T. Trindade, Os nanomateriais e a descoberta de novos mundos na bancada do químico, (Química Nova, 2012). https://doi.org/10.1590/S0100-40422012000700026

  27. A. Zuorro, A. Iannone, S. Natali, and R. Lavecchia (2019). Processes. https://doi.org/10.3390/pr7040193.

    Article  Google Scholar 

  28. N. Bala, S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, and P. Nandy (2015). RSC Advances. https://doi.org/10.1039/C4RA12784F.

    Article  Google Scholar 

  29. R. Karthik, Y.-S. Hou, S.-M. Chen, A. Elangovan, M. Ganesan, and P. Muthukrishnan (2016). J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2016.03.044.

    Article  Google Scholar 

  30. S. Ahmed, S. Saifullah, M. Ahmad, B. L. Swami, and S. Ikram (2016). J Radiat Res Appl Sci. https://doi.org/10.1016/j.jrras.2015.06.006.

    Article  Google Scholar 

  31. P. Jamdagni, P. Khatri, and J. S. Rana (2018). J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2016.10.002.

    Article  Google Scholar 

  32. R. Dobrucka, J. Dlugaszewska, and M. Kaczmarek (2019). Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.02.009.

    Article  Google Scholar 

  33. S. Wahyuningsih, L. Wulandari, M. W. Wartono, H. Munawaroh, and A. H. Ramelan (2017). IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/193/1/012047.

    Article  Google Scholar 

  34. A. Shah, B. Xavier, and D. Jayalakshmi (2020). Asian J Chem. https://doi.org/10.14233/ajchem.2020.22463.

    Article  Google Scholar 

  35. P. S. Devi, M. Saravanakumar, and S. Moh (2012). Afr. J. Food Sci. 6, 567–573.

    Google Scholar 

  36. Y. Q. He, X. Li, J. Wang, Q. Yang, B. H. Yao, Y. J. Zhao, A. M. Zhao, W. X. Sun, and Q. Zhang (2017). Environ Toxicol Pharmacol. https://doi.org/10.1016/j.etap.2017.08.035.

    Article  PubMed  Google Scholar 

  37. T. T. Vo, C. H. Dang, V. D. Doan, V. S. Dang, and T. D. Nguyen (2020). J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-019-01197-x.

    Article  Google Scholar 

  38. M. Usman, A. Ahmed, B. Yu, Q. Peng, Y. Shen, and H. Cong (2019). Mater Res Bull. https://doi.org/10.1016/j.materresbull.2019.110583.

    Article  Google Scholar 

  39. Y. Liu, X. Jin, and Z. Chen (2018). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.01.241.

    Article  PubMed Central  PubMed  Google Scholar 

  40. M. Jayandran and M. M. Haneefa (2015). J Appl Pharm Sci. https://doi.org/10.7324/JAPS.2015.501218.

    Article  Google Scholar 

  41. M. Boudiaf, Y. Messai, E. Bentouhami, M. Schmutz, C. Blanck, L. Ruhlmann, H. Bezzi, L. Tairi, and D. Eddine Mekki (2021). J Phys Chem Solids. https://doi.org/10.1016/j.jpcs.2021.110020.

    Article  Google Scholar 

  42. J. Kadam, S. Madiwale, B. Bashte, S. Dindorkar, P. Dhawal, P. More, and S. N. Appl (2020). Science. https://doi.org/10.1007/s42452-020-03663-5.

    Article  Google Scholar 

  43. J. L. AlJabbar, D. O. B. Apriandanu, Y. Yulizar, and S. Sudirman (2020). SIOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899x/763/1/012031.

    Article  Google Scholar 

  44. Y. A. Selim, M. A. Azb, I. Ragab, and M. H. M. Abd El-Azim (2020). Sci Rep. https://doi.org/10.1038/s41598-020-60541-1.

    Article  PubMed Central  PubMed  Google Scholar 

  45. E. Gurgur, S. S. Oluyamo, A. O. Adetuyi, O. I. Omotunde, A. E. Okoronkwo, and S. N. Appl (2020). Science. https://doi.org/10.1007/s42452-020-2269-3.

    Article  Google Scholar 

  46. D. C. V. Arifin, D. I. Saragih, and S. J. Santosa (2020). Int J. https://doi.org/10.30534/ijeter/2020/34862020.

    Article  Google Scholar 

  47. D. I. Saragih, D. C. V. Arifin, B. Rusdiarso, S. Suyanta, and S. J. Santosa (2020). Key Eng Mater. https://doi.org/10.4028/www.scientific.net/KEM.840.360.

    Article  Google Scholar 

  48. H. Wu, J. Qiao, Y.-H. Hwang, C. Xu, T. Yu, R. Zhang, H. Cai, D.-P. Kim, and L. Qi (2019). Talanta. https://doi.org/10.1016/j.talanta.2019.03.077.

    Article  PubMed  Google Scholar 

  49. X. Chang, P. Gao, Q. Li, H. Liu, H. Hou, S. Wu, J. Chen, L. Gan, M. Zhao, and D. Zhang (2021). Sens Actuators B. https://doi.org/10.1016/j.snb.2021.130363.

    Article  Google Scholar 

  50. N. S. R. Satyavolu, K. Y. Loh, L. H. Tan, and Y. Lu (2019). Small. https://doi.org/10.1002/smll.201900975.

    Article  PubMed  Google Scholar 

  51. L. H. Tan, Y. Yue, N. S. R. Satyavolu, A. S. Ali, Z. Wang, Y. Wu, and Y. Lu (2015). J Am Chem Soc. https://doi.org/10.1021/jacs.5b09567.

    Article  PubMed Central  PubMed  Google Scholar 

  52. J. Martín, M. J. Navas, A. M. Jiménez-Moreno, and A. G. Asuero (2017). InTech. https://doi.org/10.5772/66892.

    Article  Google Scholar 

  53. M. Leopoldini, N. Russo, and M. Toscano (2011). Food Chem. https://doi.org/10.1016/j.foodchem.2010.08.012.

    Article  Google Scholar 

  54. A. N. Panche, A. D. Diwan, and S. R. Chandra (2016). J Nutr Sci. https://doi.org/10.1017/jns.2016.41.

    Article  PubMed Central  PubMed  Google Scholar 

  55. V. S. Fedenko, S. A. Shemet, and M. Landi (2017). J Plant Physiol. https://doi.org/10.1016/j.jplph.2017.02.001.

    Article  PubMed  Google Scholar 

  56. H. D. Schreiber, A. M. Swink, and T. D. Godsey (2010). J Inorg Biochem. https://doi.org/10.1016/j.jinorgbio.2010.03.006.

    Article  PubMed  Google Scholar 

  57. P. Mladěnka, K. Macáková, T. Filipský, L. Zatloukalová, L. Jahodář, P. Bovicelli, I. P. Silvestri, R. Hrdina, and L. Saso (2011). J Inorg Biochem. https://doi.org/10.1016/j.jinorgbio.2011.02.003.

    Article  PubMed  Google Scholar 

  58. Y. Liu and M. Guo (2015). Molecules. https://doi.org/10.3390/molecules20058583.

    Article  PubMed Central  PubMed  Google Scholar 

  59. M. Khater, D. Ravishankar, F. Greco, and H. M. I. Osborn (2019). Future Med Chem. https://doi.org/10.4155/fmc-2019-0237.

    Article  PubMed  Google Scholar 

  60. S. Roy, S. Mallick, T. Chakraborty, N. Ghosh, A. K. Singh, S. Manna, and S. Majumdar (2015). Food Chem. https://doi.org/10.1016/j.foodchem.2007.10.037.

    Article  PubMed  Google Scholar 

  61. B. Smyk, B. Pliszka, and R. Drabent (2008). Food Chem. https://doi.org/10.1016/j.foodchem.2007.10.037.

    Article  Google Scholar 

  62. I. S. Unal, A. Demirbas, I. Onal, N. Ildiz, and I. Ocsoy (2020). J Photochem Photobiol B. https://doi.org/10.1016/j.jphotobiol.2020.111800.

    Article  PubMed  Google Scholar 

  63. A. Demirbas, E. Kislakci, Z. Karaagac, I. Onal, N. Ildiz, and I. Ocsoy (2019). Mater Res Express. https://doi.org/10.1088/2053-1591/ab540c.

    Article  Google Scholar 

  64. M. H. Oueslati, L. BenTahar, and A. H. Harrath (2020). Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.09.003.

    Article  Google Scholar 

  65. D. Podstawczyk, A. Pawlowska, A. Bastrzyk, M. Czeryba, and J. Oszmianski (2019). ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.9b05078.

    Article  Google Scholar 

  66. C. Ma, H. Xiao, and L. He (2016). J Raman Spectrosc. https://doi.org/10.1002/jrs.4932.

    Article  Google Scholar 

  67. N. Basavegowda, A. Idhayadhulla, and Y. R. Lee (2014). Ind Crops Products. https://doi.org/10.1016/j.indcrop.2013.12.006.

    Article  Google Scholar 

  68. S. Saif, A. Tahir, T. Asim, and Y. Chen (2016). Nanomaterials. https://doi.org/10.3390/nano6110205.

    Article  PubMed Central  PubMed  Google Scholar 

  69. S. Wu, S. Rajeshkumar, M. Madasamy, and V. Mahendran (2020). Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2020.1817053.

    Article  PubMed  Google Scholar 

  70. Y. S. Choudhary, L. Jothi and G. Nageswaran, in S. Thomas, R. Thomas, A. K. Zachariah, R. K. Mishr (eds.) Electrochemical characterization (Elsevier, Amsterdam, 2017), pp. 19–54. https://doi.org/10.1016/B978-0-323-46140-5.00002-9.

  71. W. F. Pacheco, F. S. Semaan, V. G. K. de Almeida, A. G. S. L. Ritta, and R. Q. Aucélio (2013). Rev Virtual Química. https://doi.org/10.5935/1984-6835.20130040.

    Article  Google Scholar 

  72. S. Komorsky-Lovric and I. Novak (2011). J Food Sci. https://doi.org/10.1111/j.1750-3841.2011.02256.x.

    Article  PubMed  Google Scholar 

  73. N. Arroyo-Currás, V. Rosas-García, and M. Videa (2016). Molecules. https://doi.org/10.3390/molecules21111422.

    Article  PubMed Central  PubMed  Google Scholar 

  74. A. M. Chiorcea-Paquim, T. A. Enache, E. De Souza Gil, and A. M. Oliveira-Brett (2020). Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12566.

    Article  PubMed  Google Scholar 

  75. A. A. de Lima, E. M. Sussuchi, and W. F. De Giovani (2007). Croat. Chem. Acta 80, 29–34.

    Google Scholar 

  76. C. R. de Menezes Peixoto, S. Fraga, J. de Rosa Justim, M. S. Gomes, D. G. Carvalho, J. A. Jarenkow, and N. F. de Moura (2017). J Electroanal Chem. https://doi.org/10.1007/s42452-021-04167-6.

    Article  Google Scholar 

  77. C. R. Schmitt, F. A. Duarte, M. Godoi, C. R. M. Peixoto, F. Trombetta, and G. R. Rosa (2021). SN Appl Sci. https://doi.org/10.1007/s42452-021-04167-6.

    Article  Google Scholar 

  78. P. A. Kilmartin, H. Zou, and A. L. Waterhouse (2001). J Agric Food Chem. https://doi.org/10.1021/jf001044u.

    Article  PubMed  Google Scholar 

  79. S. M. C. Gomes, I. P. G. Fernandes, N. S. Shekhawat, S. Kumbhat, and A. M. Oliveira-Brett (2015). Electroanalysis. https://doi.org/10.1002/elan.201400555.

    Article  Google Scholar 

  80. A. Cata, M. N. Stefanut, R. Pop, C. Tanasie, C. Mosoarca, and A. D. Zamfir (2016). Croat Chem Acta. https://doi.org/10.5562/cca2656.

    Article  Google Scholar 

  81. S. Komorsky-Lovric and I. Novak (2011). Int. J. Electrochem. Sci. 6, 4638–4647.

    Article  CAS  Google Scholar 

  82. G. S. Vasyliev, V. I. Vorobyova, and O. V. Linyucheva (2020). J Anal Methods Chem. https://doi.org/10.1155/2020/8869436.

    Article  PubMed Central  PubMed  Google Scholar 

  83. F. Z. Issaad, I. P. G. Fernandes, T. A. Enache, C. Mouats, I. A. Rodrigues, and A. M. Oliveira-Brett (2017). Electroanalysis. https://doi.org/10.1002/elan.201600370.

    Article  Google Scholar 

  84. C. Talbot (2019). School Sci. Rev. 100, 9–12.

    CAS  Google Scholar 

  85. H. Devnani and S. P. Satsangee (2015). Int J Environ Sci Technol. https://doi.org/10.1007/s13762-014-0497-z.

    Article  Google Scholar 

  86. J. Jeyasundari, P. S. Praba, Y. B. A. Jacob, V. S. Vasantha, and V. Shanmugaiah (2017). Chem. Sci. Rev. Lett. 6, 1244–1252.

    CAS  Google Scholar 

  87. A. Angel, R. Manikandan, F. J. Jency, S. S. Narayanan, and P. N. Deepa (2017). Int J Adv Res. https://doi.org/10.21474/ijar01/4563.

    Article  Google Scholar 

  88. K. M. Ponvel, T. Narayanaraja, and J. Prabakaran (2015). Int. J. Nano Dimens. 6, 339–350.

    CAS  Google Scholar 

  89. X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, and M. Maaza (2018). Mater Res Bull. https://doi.org/10.1016/j.materresbull.2017.09.022.

    Article  Google Scholar 

  90. Á. I. López-Lorente and B. Mizaikoff (2016). TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2016.01.012.

    Article  Google Scholar 

  91. S. Kogikoski Jr., J. D. S. D. Souza, P. Homem-de-Mello, H. Martinho, W. A. Alves, and R. A. Ando (2012). Química Nova. https://doi.org/10.1590/S0100-40422012000600036.

    Article  Google Scholar 

  92. N. Venkatesh, H. Bhowmik, and A. Kuila (2018). Biomed J Sci Tech Res. https://doi.org/10.26717/BJSTR.2018.04.001011.

    Article  Google Scholar 

  93. M. F. Zayed, R. A. Mahfoze, S. M. El-Kousy, and E. A. Al-Ashkar (2020). Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2019.124167.

    Article  Google Scholar 

  94. C. Hess (2021). Chem Soc Rev. https://doi.org/10.1039/D0CS01059F.

    Article  PubMed  Google Scholar 

  95. A. J. Kora, S. R. Beedu, and A. Jayaraman (2012). Org Med Chem Lett. https://doi.org/10.1186/2191-2858-2-17.

    Article  PubMed Central  PubMed  Google Scholar 

  96. X. Cao, C. Ma, Z. Gao, J. Zheng, L. He, D. J. McClements, and H. Xiao (2016). J Agric Food Chem. https://doi.org/10.1021/acs.jafc.6b03906.

    Article  PubMed  Google Scholar 

  97. P. S. Kumar, K. G. Pavithra, and M. Naushad, Characterization techniques for nanomaterials, in S. Thomas, E. H. M. Sakho, N. Kalarikkal, S. O. Oluwafemi, and J. Wu (eds.), Nanomaterials for Solar Cell Applications (Elsevier, Amsterdam, 2019), pp. 97–124. https://doi.org/10.1016/B978-0-12-813337-8.00004-7.

    Chapter  Google Scholar 

  98. M. F. Baran, H. Acay, and C. Keskin (2020). Glob Challenges. https://doi.org/10.1002/gch2.201900104.

    Article  Google Scholar 

  99. A. A. Bunaciu, E. G. UdriŞTioiu, and H. Y. Aboul-Enein (2015). Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2014.949616.

    Article  PubMed  Google Scholar 

  100. S. Kandasamy, S. Chinnappan, S. Thangaswamy, and S. Balakrishnan (2019). Mater Res Express. https://doi.org/10.1088/2053-1591/ab608f.

    Article  Google Scholar 

  101. M. Khan, M. Khan, S. F. Adil, M. N. Tahir, W. Tremel, H. Z. Alkhathlan, A. Al-Warthan, and M. R. H. Siddiqui (2013). Int J Nanomed. https://doi.org/10.2147/IJN.S43309.

    Article  Google Scholar 

  102. C. S. Fadley (2010). J Electron Spectrosc Relat Phenomena. https://doi.org/10.1016/j.elspec.2010.01.006.

    Article  Google Scholar 

  103. G. Greczynski and L. Hultman (2020). Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2019.100591.

    Article  Google Scholar 

  104. J. Singh, A. Mehta, M. Rawat, and S. Basu (2018). J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.01.054.

    Article  Google Scholar 

  105. J. Kadam, P. Dhawal, S. Barve, S. Kakodkar, and S. N. Appl (2020). Science. https://doi.org/10.1007/s42452-020-2543-4.

    Article  Google Scholar 

  106. T. Ahmad, M. A. Bustam, M. Irfan, M. Moniruzzaman, H. M. Anwaar Asghar, and S. Bhattacharjee (2018). J Mol Struct. https://doi.org/10.1016/j.molstruc.2017.11.095.

    Article  Google Scholar 

  107. N. Bumbudsanpharoke and S. Ko (2015). BioResources. https://doi.org/10.15376/biores.10.4.6428-6441.

    Article  Google Scholar 

  108. P. Nisar, N. Ali, L. Rahman, M. Ali, and Z. K. Shinwari (2019). JBIC J. Biol. Inorg. Chem. 24, 7. https://doi.org/10.1007/s00775-019-01717-7.

    Article  CAS  Google Scholar 

  109. V. J. Garole, B. C. Choudhary, S. R. Tetgure, D. J. Garole, and A. U. Borse (2019). Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-2173-1.

    Article  Google Scholar 

  110. J. Singh, V. Kumar, S. S. Jolly, K.-H. Kim, M. Rawat, D. Kukkar, and Y. F. Tsang (2019). J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2019.08.002.

    Article  Google Scholar 

  111. M. Mavaei, A. Chahardoli, Y. Shokoohinia, A. Khoshroo, and A. Fattahi (2020). Sci Rep. https://doi.org/10.1038/s41598-020-58697-x.

    Article  PubMed Central  PubMed  Google Scholar 

  112. M. F. Zayed and W. H. Eisa (2014). Spectrochim Acta A. https://doi.org/10.1016/j.saa.2013.10.092.

    Article  Google Scholar 

  113. A. Gangula, R. Podila, L. Karanam, C. Janardhana, and A. M. Rao (2011). Langmuir. https://doi.org/10.1021/la2034559.

    Article  PubMed  Google Scholar 

  114. F. Laghrib, H. Houcini, F. Khalil, A. Liba, M. Bakasse, S. Lahrich, and M. A. ElMhammedi (2020). ChemistrySelect. https://doi.org/10.1002/slct.201903955.

    Article  Google Scholar 

  115. A. Aravind, M. Sebastian, and B. Mathew (2018). N J Chem. https://doi.org/10.1039/C8NJ03696A.

    Article  Google Scholar 

  116. K. Velsankar, R. M. AswinKumara, R. Preethi, V. Muthulakshmi, and S. Sudhahar (2020). J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104123.

    Article  Google Scholar 

  117. S. Nasir, K. F. A. Walters, R. M. Pereira, M. Waris, A. A. Chatha, M. Hayat, and M. Batool (2022). J Asia-Pac Entomol. https://doi.org/10.1016/j.aspen.2022.101937.

    Article  Google Scholar 

  118. M. A. Abomuti, E. Y. Danish, A. Firoz, N. Hasan, and M. A. Malik (2021). Biology. https://doi.org/10.3390/biology10111075.

    Article  PubMed Central  PubMed  Google Scholar 

  119. S. C. Mali, A. Dhaka, C. K. Githala, and R. Trivedi (2020). Biotechnol Rep. https://doi.org/10.1016/j.btre.2020.e00518.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (Coordination for the Improvement of Higher Education Personnel) for partial financial support and PPGQTA for scholarships.

Funding

This study was financed in part by the Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS/PRONEX 16/2551-0000481-1).

Author information

Authors and Affiliations

Authors

Contributions

DR: Conceptualization, Methodology, Formal analysis and investigation, Writing—original draft preparation, Writing—review and editing. CRdMP: Methodology, Formal analysis and investigation, Writing—original draft preparation, Writing—review and editing, Funding acquisition. FAP: Writing—original draft preparation, Writing—review and editing, Funding acquisition. MAG: Conceptualization, Formal analysis and investigation, Writing—original draft preparation, Writing—review and editing, Funding acquisition, Supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcos A. Gelesky.

Ethics declarations

Competing interests

The authors declare that there are no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapachi, D., de M. Peixoto, C.R., Pavan, F.A. et al. Metallic Nanoparticles Biosynthesized by Phenolic-Rich Extracts: Interaction, Characterization and Application. J Clust Sci 34, 2743–2757 (2023). https://doi.org/10.1007/s10876-023-02426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02426-7

Keywords

Navigation