Skip to main content

Advertisement

Log in

Synthesis, Characterization and Potent Antibacterial Activity of Metal-Substituted Spinel Ferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

CuFe2O4, ZnFe2O4, and MnFe2O4 ferrite nanoparticles (NPs) have been synthesized through auto composition sol–gel method, and citric acid was used as the chelating agent. Phase analysis of nanoparticles confirmed the pure cubic spinel structure. The morphology and elemental composition verified the presence of all the elements in prepared samples and size distribution of NPs was estimated to be ~ 20–30 nm. Saturation magnetizations and magneton numbers were in the range of 53–67 emu/g and 2.29–3.12 nB, respectively. MnFe2O4 NPs exhibited the strongest magnetization of all NPs. Highly significant antibacterial activity (22 mm zone of inhibition) of CuFe2O4 NPs was observed against Gram negative bacteria, Escherichia coli. The broth microdilution assay result demonstrated the lower minimum inhibitory concentration and minimum bactericidal concentration values for CuFe2O4 as well as for ZnFe2O4 and MnFe2O4 NPs in combination. Furthermore, the in vitro cytotoxicity assay revealed that NPs were not toxic to HSF 1184 cell lines at 400 μg/ml concentration, hence the prepared NPs are safe, affordable, sustainable composite and can be used for potent antibacterial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm the absence of sharing data.

References

  1. A. Amirabadizadeh, Z. Salighe, R. Sarhaddi, and Z. Lotfollahi (2017). Journal of Magnetism and Magnetic Materials 434, 78. https://doi.org/10.1016/j.jmmm.2017.03.023.

    Article  CAS  Google Scholar 

  2. I. Sharifi, H. Shokrollahi, and S. Amiri (2012). Journal of Magnetism and Magnetic Materials 324, 903. https://doi.org/10.1016/j.jmmm.2011.10.017.

    Article  CAS  Google Scholar 

  3. H. Yang, C. Zhang, X. Shi, et al. (2010). Biomaterials 31, 3667. https://doi.org/10.1016/j.biomaterials.2010.01.055.

    Article  CAS  PubMed  Google Scholar 

  4. H. Wu, G. Liu, X. Wang, et al. (2011). Acta Biomaterialia 7, 3496. https://doi.org/10.1016/j.actbio.2011.05.031.

    Article  CAS  PubMed  Google Scholar 

  5. A. A. Ati, Z. Othaman, and A. Samavati (2013). Journal of Molecular Structure 1052, 177. https://doi.org/10.1016/j.molstruc.2013.08.040.

    Article  CAS  Google Scholar 

  6. K. Mandal, S. Chakraverty, S. Pan Mandal, P. Agudo, M. Pal, and D. Chakravorty (2002). Journal of applied physics 92, 501.

    Article  CAS  Google Scholar 

  7. S. Dabagh, A. A. Ati, R. M. Rosnan, S. Zare, and Z. Othaman (2015). Materials Science in Semiconductor Processing 33, 1. https://doi.org/10.1016/j.mssp.2015.01.025.

    Article  CAS  Google Scholar 

  8. M. Irfan Hussain, M. Xia, K. Akhtar, A. Nawaz, S. Sharma, and Y. Javed, Magnetic nanoheterostructures (Springer, 2020).

    Google Scholar 

  9. K. E. Sickafus, J. M. Wills, and N. W. Grimes (1999). Journal of the American Ceramic Society 82, 3279.

    Article  CAS  Google Scholar 

  10. H. Deligöz, A. Baykal, E. Tanrıverdi, Z. Durmus, and M. S. Toprak (2012). Materials Research Bulletin 47, 537.

    Article  Google Scholar 

  11. M. Zahraei, A. Monshi, M. del Puerto Morales, D. Shahbazi-Gahrouei, M. Amirnasr, and B. Behdadfar (2015). Journal of Magnetism and Magnetic Materials 393, 429. https://doi.org/10.1016/j.jmmm.2015.06.006.

    Article  CAS  Google Scholar 

  12. A. Hao, M. Ismail, S. He, et al. (2017). RSC Advances 7, 46665.

    Article  CAS  Google Scholar 

  13. H. Moradmard, S. FarjamiShayesteh, P. Tohidi, Z. Abbas, and M. Khaleghi (2015). Journal of Alloys and Compounds 650, 116. https://doi.org/10.1016/j.jallcom.2015.07.269.

    Article  CAS  Google Scholar 

  14. C. Ehi-Eromosele, J. Olugbuyirozz, O. Taiwo, O. Bamgboye, and C. Ango (2018). Bulletin of the Chemical Society of Ethiopia 32, 451.

    Article  CAS  Google Scholar 

  15. G. N. Rajivgandhi, G. Ramachandran, C. C. Kanisha, et al. (2021). Results in Physics 23, 104065. https://doi.org/10.1016/j.rinp.2021.104065.

    Article  Google Scholar 

  16. Z. Szotek, W. Temmerman, D. Ködderitzsch, A. Svane, L. Petit, and H. Winter (2006). Physical Review B 74, 174431.

    Article  Google Scholar 

  17. T. Dippong, E. A. Levei, and O. Cadar (2021). Nanomaterials 11, 1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Ertas and L.-S. Bouchard (2017). Journal of Applied Physics 121, 093902.

    Article  Google Scholar 

  19. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, and A. Thakur (2020). Ceramics International 46, 15740. https://doi.org/10.1016/j.ceramint.2020.03.287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H. Shokrollahi (2013). Materials Science and Engineering: C 33, 2476.

    Article  CAS  PubMed  Google Scholar 

  21. M. Amiri, M. Salavati-Niasari, and A. Akbari (2019). Advances in Colloid and Interface Science 265, 29.

    Article  CAS  PubMed  Google Scholar 

  22. S. Nasrin, F.-U.-Z. Chowdhury, and S. Hoque (2019). Journal of Magnetism and Magnetic Materials 479, 126.

    Article  CAS  Google Scholar 

  23. M. A. Maksoud, G. S. El-Sayyad, A. Ashour, et al. (2019). Microbial pathogenesis 127, 144.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Xu, Q. Liu, M. Xie, et al. (2018). Journal of Colloid and Interface Science 528, 70. https://doi.org/10.1016/j.jcis.2018.05.066.

    Article  CAS  PubMed  Google Scholar 

  25. M. Fang, J.-H. Chen, X.-L. Xu, P.-H. Yang, and H. F. Hildebrand (2006). International Journal of Antimicrobial Agents 27, 513.

    Article  CAS  PubMed  Google Scholar 

  26. H Nosrati, M Salehiabar, F Mozafari, et al. (2022) Applied Organometallic Chemistry: e6861.

  27. A Bigham, V Rahimkhoei, P Abasian, et al. (2021) Chemical Engineering Journal: 134146.

  28. S. Mallesh and V. Srinivas (2019). Journal of Magnetism and Magnetic Materials 475, 290.

    Article  CAS  Google Scholar 

  29. A. V. Malyshev, A. B. Petrova, A. P. Surzhikov, and A. N. Sokolovskiy (2019). Ceramics International 45, 2719. https://doi.org/10.1016/j.ceramint.2018.09.114.

    Article  CAS  Google Scholar 

  30. X. Zhou, Y. Zhou, L. Zhou, J. Wei, J. Wu, and D. Yao (2019). Ceramics International 45, 6236. https://doi.org/10.1016/j.ceramint.2018.12.102.

    Article  CAS  Google Scholar 

  31. M. A. Ansari, A. Baykal, S. Asiri, and S. Rehman (2018). Journal of Inorganic and Organometallic Polymers and Materials 28, 2316.

    Article  CAS  Google Scholar 

  32. Z.-X. Tang and B.-F. Lv (2014). Brazilian Journal of Chemical Engineering 31, 591.

    Article  Google Scholar 

  33. I. L. Liakos, M. H. Abdellatif, C. Innocenti, et al. (2016). Molecules 21, 520.

    Article  PubMed  PubMed Central  Google Scholar 

  34. J. V. Pande, A. B. Bindwal, Y. B. Pakade, and R. B. Biniwale (2018). International Journal of Hydrogen Energy 43, 7411. https://doi.org/10.1016/j.ijhydene.2018.02.105.

    Article  CAS  Google Scholar 

  35. M. K. Satheeshkumar, E. R. Kumar, C. Srinivas, et al. (2019). Journal of Magnetism and Magnetic Materials 469, 691. https://doi.org/10.1016/j.jmmm.2018.09.039.

    Article  CAS  Google Scholar 

  36. A. S. Hathout, A. Aljawish, B. A. Sabry, et al. (2017). Journal of Applied Pharmaceutical Science 7, 086.

    Article  CAS  Google Scholar 

  37. K. Maaz, S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu, and J. L. Duan (2009). Journal of Magnetism and Magnetic Materials 321, 1838. https://doi.org/10.1016/j.jmmm.2008.11.098.

    Article  CAS  Google Scholar 

  38. S. Bid and S. K. Pradhan (2004). Materials Chemistry and Physics 84, 291. https://doi.org/10.1016/j.matchemphys.2003.08.012.

    Article  CAS  Google Scholar 

  39. V. Pillai and D. O. Shah (1996). Journal of Magnetism and Magnetic Materials 163, 243. https://doi.org/10.1016/S0304-8853(96)00280-6.

    Article  CAS  Google Scholar 

  40. D. Navas, S. Fuentes, A. Castro-Alvarez, and E. Chavez-Angel (2021). Gels 7, 275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. T. Aruna and A. S. Mukasyan (2008). Current Opinion in Solid State and Materials Science 12, 44. https://doi.org/10.1016/j.cossms.2008.12.002.

    Article  CAS  Google Scholar 

  42. L. Guo, X. Shen, X. Meng, and Y. Feng (2010). Journal of Alloys and Compounds 490, 301. https://doi.org/10.1016/j.jallcom.2009.09.182.

    Article  CAS  Google Scholar 

  43. J. Azadmanjiri (2008). Materials Chemistry and Physics 109, 109. https://doi.org/10.1016/j.matchemphys.2007.11.001.

    Article  CAS  Google Scholar 

  44. R. S. de Biasi, A. B. S. Figueiredo, A. A. R. Fernandes, and C. Larica (2007). Solid State Communications 144, 15. https://doi.org/10.1016/j.ssc.2007.07.031.

    Article  CAS  Google Scholar 

  45. A. V. Raut, R. S. Barkule, D. R. Shengule, and K. M. Jadhav (2014). Journal of Magnetism and Magnetic Materials 358–359, 87. https://doi.org/10.1016/j.jmmm.2014.01.039.

    Article  CAS  Google Scholar 

  46. H. H. Sandstead (1994). The Journal of Laboratory and Clinical Medicine 124, 322.

    CAS  PubMed  Google Scholar 

  47. Y. Nishito and T. Kambe (2018). Journal of Nutritional Science and Vitaminology 64, 1.

    Article  CAS  PubMed  Google Scholar 

  48. M. Roselli, A. Finamore, I. Garaguso, M. S. Britti, and E. Mengheri (2003). The Journal of Nutrition 133, 4077.

    Article  CAS  PubMed  Google Scholar 

  49. A. Sutka and G. Mezinskis (2012). Frontiers of Materials Science 6, 128.

    Article  Google Scholar 

  50. Y. N. Ertas, N. N. Jarenwattananon, and L.-S. Bouchard (2015). Chemistry of Materials 27, 5371.

    Article  CAS  Google Scholar 

  51. Z. Ni, X. Gu, Y. He, et al. (2018). RSC Advances 8, 41722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. S. M. Mousavi, S. A. Hashemi, Y. Ghasemi, et al. (2018). Artificial Cells, Nanomedicine, and Biotechnology 46, S855.

    Article  CAS  PubMed  Google Scholar 

  53. R. Heydari, M. F. Koudehi, and S. M. Pourmortazavi (2019). ChemistrySelect 4, 531.

    Article  CAS  Google Scholar 

  54. B. A. Edhari, M. Mashreghi, A. Makhdoumi, and M. Darroudi (2021). Journal of Trace Elements in Medicine and Biology 68, 126840. https://doi.org/10.1016/j.jtemb.2021.126840.

    Article  CAS  PubMed  Google Scholar 

  55. S. Jabbar Shawkat and K. Chehri (2021). Avicenna J Clin Microbiol Infect 8, 123. https://doi.org/10.34172/ajcmi.2021.23.

    Article  CAS  Google Scholar 

  56. D. O. Morais, A. Pancotti, G. S. de Souza, et al. (2021). Journal of Materials Science: Materials in Medicine 32, 1.

    Google Scholar 

  57. S. Muzammil, M. Khurshid, I. Nawaz, et al. (2020). Biofouling 36, 492. https://doi.org/10.1080/08927014.2020.1776856.

    Article  CAS  PubMed  Google Scholar 

  58. M. Amooei, Z. Meshkati, R. Nasiri, and A. B. Dakhili (2021). Ecotoxicology and Environmental Safety 209, 111785. https://doi.org/10.1016/j.ecoenv.2020.111785.

    Article  CAS  PubMed  Google Scholar 

  59. M. G. Naseri, E. B. Saion, M. Hashim, A. H. Shaari, and H. A. Ahangar (2011). Solid State Communications 151, 1031. https://doi.org/10.1016/j.ssc.2011.04.018.

    Article  CAS  Google Scholar 

  60. M. Houshiar and L. Jamilpanah (2018). Materials Research Bulletin 98, 213.

    Article  CAS  Google Scholar 

  61. S. Sultana, Rafiuddin, M. Zain Khan, and K. Umar (2012). Journal of Alloys and Compounds 535, 44. https://doi.org/10.1016/j.jallcom.2012.04.081.

    Article  CAS  Google Scholar 

  62. S. Dabagh, K. Chaudhary, Z. Haider, and J. Ali (2018). Results in Physics 8, 93.

    Article  Google Scholar 

  63. S. Goh, C. Chia, S. Zakaria, et al. (2010). Materials Chemistry and Physics 120, 31.

    Article  CAS  Google Scholar 

  64. M. N. Ashiq, M. J. Iqbal, M. Najam-ul-Haq, P. H. Gomez, and A. M. Qureshi (2012). Journal of Magnetism and Magnetic Materials 324, 15.

    Article  CAS  Google Scholar 

  65. C. Cannas, A. Falqui, A. Musinu, D. Peddis, and G. Piccaluga (2006). Journal of Nanoparticle Research 8, 255.

    Article  CAS  Google Scholar 

  66. J. H. Almaki, R. Nasiri, A. Idris, et al. (2016). Nanotechnology 27, 105601.

    Article  PubMed  Google Scholar 

  67. M. A. Almessiere, Y. Slimani, A. D. Korkmaz, et al. (2019). Ultrasonics Sonochemistry 54, 1. https://doi.org/10.1016/j.ultsonch.2019.02.022.

    Article  CAS  PubMed  Google Scholar 

  68. A. Hajalilou and S. A. Mazlan (2016). Applied Physics A 122, 1.

    Article  CAS  Google Scholar 

  69. S. Mallesh, V. Srinivas, M. Vasundhara, and K. H. Kim (2020). Physica B: Condensed Matter 582, 411963. https://doi.org/10.1016/j.physb.2019.411963.

    Article  CAS  Google Scholar 

  70. Y. Behra and N. Singh (2018). Materials Today: Proceedings 5, 15451.

    CAS  Google Scholar 

  71. G. Goya, H. Rechenberg, and J. Jiang (1998). Journal of applied physics 84, 1101.

    Article  CAS  Google Scholar 

  72. C.-R. Lin, Y.-M. Chu, and S.-C. Wang (2006). Materials Letters 60, 447.

    Article  CAS  Google Scholar 

  73. M Satalkar, N Ghodke, S Kane (2014) Journal of Physics: Conference Series. IOP Publishing.

  74. S. Faraji, G. Dini, and M. Zahraei (2019). Journal of Magnetism and Magnetic Materials 475, 137.

    Article  CAS  Google Scholar 

  75. M. Almessiere, Y. Slimani, A. D. Korkmaz, et al. (2020). Ultrasonics Sonochemistry 61, 104836.

    Article  CAS  PubMed  Google Scholar 

  76. Z. Huang, Q. Chen, S. Jiang, S. Dong, and Y. Zhai (2018). AIP Advances 8, 055807.

    Article  Google Scholar 

  77. I. D. Akhidime, F. Saubade, P. S. Benson, et al. (2019). Food and Bioproducts Processing 113, 68. https://doi.org/10.1016/j.fbp.2018.09.003.

    Article  CAS  Google Scholar 

  78. A. Varkey (2010). Scientific Research and Essays 5, 3834.

    Google Scholar 

  79. S. Ayazi, M. Ghorbani, and R. Abedini (2021). Chemical Engineering Research and Design 169, 214.

    Article  CAS  Google Scholar 

  80. S. Rajabi and S. Sohrabnezhad (2018). Journal of Fluorine Chemistry 206, 36.

    Article  CAS  Google Scholar 

  81. M. Hashim, S. E. Shirsath, S. Meena, et al. (2013). Journal of Magnetism and Magnetic Materials 341, 148.

    Article  CAS  Google Scholar 

  82. I. A. Alsafari, S. Munir, S. Zulfiqar, M. S. Saif, M. F. Warsi, and M. Shahid (2021). Ceramics International 47, 28874.

    Article  CAS  Google Scholar 

  83. L. Gabrielyan, H. Badalyan, V. Gevorgyan, and A. Trchounian (2020). Scientific Reports 10, 1.

    Article  Google Scholar 

  84. N. MahmoudiKhatir, Z. Abdul-Malek, A. K. Zak, A. Akbari, and F. Sabbagh (2016). Journal of Sol-Gel Science and Technology 78, 91.

    Article  CAS  Google Scholar 

  85. M. Esfahanian, M. A. Ghasemzadeh, and S. M. H. Razavian (2019). Artificial Cells, Nanomedicine, and Biotechnology 47, 2024.

    Article  CAS  PubMed  Google Scholar 

  86. S. S. Mondal, N. Jaiswal, P. S. Bera, et al. (2021). Applied Organometallic Chemistry 35, e6026.

    CAS  Google Scholar 

  87. Y. Jiang, Z. Huo, X. Qi, T. Zuo, and Z. Wu (2022). Nanomedicine 17, 303.

    Article  CAS  PubMed  Google Scholar 

  88. Z. Lin, Y. Li, G. Gong, et al. (2018). International Journal of Nanomedicine 13, 5787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by 2232 International Fellowship for Outstanding Researchers Program of TÜBİTAK (Project No: 118C346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavuz Nuri Ertas.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabagh, S., Haris, S.A. & Ertas, Y.N. Synthesis, Characterization and Potent Antibacterial Activity of Metal-Substituted Spinel Ferrite Nanoparticles. J Clust Sci 34, 2067–2078 (2023). https://doi.org/10.1007/s10876-022-02373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02373-9

Keywords

Navigation