Skip to main content
Log in

Synthesis of Cu2S Ultrasmall Nanoparticles in Zeolite 4A Nanoreactor

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, Cu2S ultrasmall nanoparticles were synthesized in a zeolite 4A nanoreactor (ZA) by the ion exchange method, which consisted of two steps: (1) the ion exchange of Na+, located in ZA, for Cu+ and Cu2+, and (2), formation of Cu2S nanoparticles, using Na2S by metathesis reaction (double displacement reaction). The molecular structure of ZA was verified by FT-IR and XRD and the formation of Cu2S nanoparticles in the ZA matrix by DSC, UV–Vis, Raman, TEM, and HRTEM characterizations. The results showed a non-modified molecular structure of the Z4 by synthesis of Cu2S nanoparticles with a size distribution of 4–8 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. P. Wang, A. Titov, R. McGibbon, et al. (2014). Discovering chemistry with an ab initio nanoreactor. Nat Chem 6, 1044–1048. https://doi.org/10.1038/nchem.2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. T. De Martino, L. K. E. A. Abdelmohsen, F. P. J. T. Rutjes, and J. C. M. Van Hest (2018). Nanoreactors for green catalysis. Beilstein J Org Chem 14, 716–733. https://doi.org/10.3762/bjoc.14.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. H. Lee, W. Bonte, S. Corthals, et al. (2019). Zeolite nanoreactor for investigating sintering effects of cobalt-catalyzed Fischer-Tropsch synthesis. Ind Eng Chem Res 58, 5140–5145. https://doi.org/10.1021/acs.iecr.8b05755.

    Article  CAS  Google Scholar 

  4. J. Li, A. Corma, and J. Yu (2015). Synthesis of new zeolite structures. Chem Soc Rev 44, 7112–7127. https://doi.org/10.1039/c5cs00023h.

    Article  CAS  PubMed  Google Scholar 

  5. S. E. Lehman and S. C. Larsen (2014). Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ Sci Nano 1, 200–213. https://doi.org/10.1039/c4en00031e.

    Article  CAS  Google Scholar 

  6. S. Sugiyama, S. Yamamoto, O. Matsuoka, et al. (1999). AFM observation of double 4-rings on zeolite LTA crystals surface. Microporous Mesoporous Mater 28, 1–7. https://doi.org/10.1016/S1387-1811(98)00271-6.

    Article  CAS  Google Scholar 

  7. C. Chuapradit, L. R. Wannatong, D. Chotpattananont, et al. (2005). Polyaniline/zeolite LTA composites and electrical conductivity response towards CO. Polymer (Guildf) 46, 947–953. https://doi.org/10.1016/j.polymer.2004.11.101.

    Article  CAS  Google Scholar 

  8. Z. Xue, J. Ma, W. Hao, et al. (2012). Synthesis and characterization of ordered mesoporous zeolite LTA with high ion exchange ability. J Mater Chem 22, 2532–2538. https://doi.org/10.1039/c1jm14740d.

    Article  CAS  Google Scholar 

  9. Y. C. Feng, Y. Meng, F. X. Li, et al. (2013). Synthesis of mesoporous LTA zeolites with large BET areas. J Porous Mater 20, 465–471. https://doi.org/10.1007/s10934-012-9617-7.

    Article  CAS  Google Scholar 

  10. Y. Chai, W. Shang, W. Li, et al. (2019). Noble metal particles confined in zeolites: synthesis, characterization, and applications. Adv Sci 6, 1900299. https://doi.org/10.1002/advs.201900299.

    Article  CAS  Google Scholar 

  11. E. Coutino-Gonzalez, M. Roeffaers, and J. Hofkens, Highly luminescent metal clusters confined in zeolites. (Springer, Cham, 2020), pp. 75–103.

    Google Scholar 

  12. P. Cao, L. Lin, H. Qi, et al. (2021). Zeolite-encapsulated Cu nanoparticles for the selective hydrogenation of furfural to furfuryl alcohol. ACS Catal 11, 10246–10256. https://doi.org/10.1021/acscatal.1c02658.

    Article  CAS  Google Scholar 

  13. L. Du, M. Yuan, H. Wei, et al. (2019). Interconnected Pd nanoparticles supported on zeolite-AFI for hydrogen detection under ultralow temperature. ACS Appl Mater Interfaces 11, 36847–36853. https://doi.org/10.1021/acsami.9b12272.

    Article  CAS  PubMed  Google Scholar 

  14. D. Farrusseng and A. Tuel (2016). Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J Chem 40, 3933–3949. https://doi.org/10.1039/c5nj02608c.

    Article  CAS  Google Scholar 

  15. L. Wang, S. Xu, S. He, and F. S. Xiao (2018). Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts. Nano Today 20, 74–83. https://doi.org/10.1016/j.nantod.2018.04.004.

    Article  CAS  Google Scholar 

  16. J. Zhang, X. Bu, P. Feng, and T. Wu (2020). Metal chalcogenide supertetrahedral clusters: synthetic control over assembly, dispersibility, and their functional applications. ACC Chem Res 53, 2261–2272. https://doi.org/10.1021/acs.accounts.0c00381.

    Article  CAS  PubMed  Google Scholar 

  17. D. Hu, X. Wang, H. Yang, et al. (2018). Host-guest electrocatalyst with cage-confined cuprous sulfide nanoparticles in etched chalcogenide semiconductor zeolite for highly efficient oxygen reduction reaction. Electrochim Acta 282, 877–885. https://doi.org/10.1016/j.electacta.2018.06.106.

    Article  CAS  Google Scholar 

  18. A. D. Terna, E. E. Elemike, J. I. Mbonu, et al. (2021). The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater Sci Eng B Solid-State Mater Adv Technol 272, 115363. https://doi.org/10.1016/j.mseb.2021.115363.

    Article  CAS  Google Scholar 

  19. M. S. Sadjadi, A. Pourahmad, S. Sohrabnezhad, and K. Zare (2007). Formation of NiS and CoS semiconductor nanoparticles inside mordenite-type zeolite. Mater Lett 61, 2923–2926. https://doi.org/10.1016/j.matlet.2006.10.067.

    Article  CAS  Google Scholar 

  20. S. Sahoo, R. Mondal, D. J. Late, and C. S. Rout (2017). Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application. Microporous Mesoporous Mater 244, 101–108. https://doi.org/10.1016/j.micromeso.2017.02.043.

    Article  CAS  Google Scholar 

  21. F. Márquez and V. Fornés (1999). Synthesis and characterisation of Ga2S3 semiconductor included in zeolite Y. Solid State Commun 112, 17–20. https://doi.org/10.1016/S0038-1098(99)00295-1.

    Article  Google Scholar 

  22. R. Ochoa-Landín, M. Flores-Acosta, R. Ramírez-Bon, et al. (2003). Characterization of Cds clusters in zeolite-A grown in alkaline solution. J Phys Chem Solids 64, 2245–2251. https://doi.org/10.1016/S0022-3697(03)00243-9.

    Article  CAS  Google Scholar 

  23. E. Caponetti, L. Pedone, M. L. Saladino, et al. (2010). MCM-41-CdS nanoparticle composite material: Preparation and characterization. Microporous Mesoporous Mater 128, 101–107. https://doi.org/10.1016/j.micromeso.2009.08.010.

    Article  CAS  Google Scholar 

  24. G. Guan, T. Kida, K. Kusakabe, et al. (2005). Photocatalytic activity of CdS nanoparticles incorporated in titanium silicate molecular sieves of ETS-4 and ETS-10. Appl Catal A Gen 295, 71–78. https://doi.org/10.1016/j.apcata.2005.08.010.

    Article  CAS  Google Scholar 

  25. H. Peng, S. M. Liu, L. Ma, et al. (2001). Growing process of CdS nanoclusters in zeolite Y studied by positron annihilation. J Cryst Growth 224, 274–279. https://doi.org/10.1016/S0022-0248(01)00972-1.

    Article  CAS  Google Scholar 

  26. Y. Liu, M. Liu, and M. T. Swihart (2017). Reversible crystal phase interconversion between covellite CuS and high chalcocite Cu2S nanocrystals. Chem Mater 29, 4783–4791. https://doi.org/10.1021/acs.chemmater.7b00579.

    Article  CAS  Google Scholar 

  27. Y. Lou, X. Chen, A. C. Samia, and C. Burda (2003). Femtosecond spectroscopic investigation of the carrier lifetimes in digenite quantum dots and discrimination of the electron and hole dynamics via ultrafast interfacial electron transfer. J Phys Chem B 107, 12431–12437. https://doi.org/10.1021/jp035618k.

    Article  CAS  Google Scholar 

  28. J. Kolny-Olesiak (2014). Synthesis of copper sulphide-based hybrid nanostructures and their application in shape control of colloidal semiconductor nanocrystals. CrystEngComm 16, 9381–9390. https://doi.org/10.1039/c4ce00674g.

    Article  CAS  Google Scholar 

  29. A. L. Soares, E. C. Dos Santos, A. Morales-García, et al. (2017). Two-dimensional crystal CuS-electronic and structural properties. 2D Mater 4, 015041. https://doi.org/10.1088/2053-1583/aa516e.

    Article  Google Scholar 

  30. R. Marshall and S. S. Mitra (1965). Optical properties of cuprous sulfide. J Appl Phys 36, 3882–3883. https://doi.org/10.1063/1.1713966.

    Article  CAS  Google Scholar 

  31. Z. Wang, X. Tang, X. Wang, et al. (2016). Near-infrared light-induced dissociation of zeolitic imidazole framework-8 (ZIF-8) with encapsulated CuS nanoparticles and their application as a therapeutic nanoplatform. Chem Commun 52, 12210–12213. https://doi.org/10.1039/c6cc06616j.

    Article  CAS  Google Scholar 

  32. E. I. Torres-Flores, N. S. Flores-López, C. E. Martínez-Núñez, et al. (2021). Silver nanoparticles in natural zeolites incorporated into commercial coating: antibacterial study. Appl Phys A Mater Sci Process 127, 1–11. https://doi.org/10.1007/s00339-020-04227-5.

    Article  CAS  Google Scholar 

  33. H. J. Cho, D. Kim, J. Li, et al. (2018). Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J Am Chem Soc 140, 13514–13520. https://doi.org/10.1021/jacs.8b09568.

    Article  CAS  PubMed  Google Scholar 

  34. J. Zhang, L. Wang, B. Zhang, et al. (2018). Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat Catal 1, 540–546. https://doi.org/10.1038/s41929-018-0098-1.

    Article  CAS  Google Scholar 

  35. J. Flores-Valenzuela, M. Cortez-Valadez, R. Ramírez-Bon, et al. (2015). Optical and vibrational properties of PbSe nanoparticles synthesized in clinoptilolite. Phys E Low-Dimensional Syst Nanostructures 72, 1–6. https://doi.org/10.1016/j.physe.2015.04.012.

    Article  CAS  Google Scholar 

  36. R. Kefirov, A. Penkova, K. Hadjiivanov, et al. (2008). Stabilization of Cu+ ions in BEA zeolite: study by FTIR spectroscopy of adsorbed CO and TPR. Microporous Mesoporous Mater 116, 180–187. https://doi.org/10.1016/j.micromeso.2008.03.032.

    Article  CAS  Google Scholar 

  37. A. Kusior, P. Jelen, J. Mazurkow, et al. (2019). Synthesis of anisotropic Cu2−xS-based nanostructures by thermal oxidation. J Therm Anal Calorim 138, 4321–4329. https://doi.org/10.1007/s10973-019-08622-w.

    Article  CAS  Google Scholar 

  38. S. Şen, B. Bardakçi, A. G. Yavuz, and A. U. Gök (2008). Polyfuran/zeolite LTA composites and adsorption properties. Eur Polym J 44, 2708–2717. https://doi.org/10.1016/j.eurpolymj.2008.05.018.

    Article  CAS  Google Scholar 

  39. T. Montanari and G. Busca (2008). On the mechanism of adsorption and separation of CO2 on LTA zeolites: an IR investigation. Vib Spectrosc 46, 45–51. https://doi.org/10.1016/j.vibspec.2007.09.001.

    Article  CAS  Google Scholar 

  40. W. Mozgawa, M. Król, and K. Barczyk (2011). FT-IR studies of zeolites from different structural groups. Chemik 65, 671–674.

    Google Scholar 

  41. B. E. Warren (1941). X-ray diffraction methods. J Appl Phys 12, 375–383. https://doi.org/10.1063/1.1712915.

    Article  Google Scholar 

  42. M. K. Doula (2007). Synthesis of a clinoptilolite-Fe system with high Cu sorption capacity. Chemosphere 67, 731–740. https://doi.org/10.1016/j.chemosphere.2006.10.072.

    Article  CAS  PubMed  Google Scholar 

  43. R. M. Mohamed and M. M. Mohamed (2008). Copper (II) phthalocyanines immobilized on alumina and encapsulated inside zeolite-X and their applications in photocatalytic degradation of cyanide: a comparative study. Appl Catal A Gen 340, 16–24. https://doi.org/10.1016/j.apcata.2008.01.029.

    Article  CAS  Google Scholar 

  44. A. Nezamzadeh-Ejhieh and S. Hushmandrad (2010). Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl Catal A Gen 388, 149–159. https://doi.org/10.1016/j.apcata.2010.08.042.

    Article  CAS  Google Scholar 

  45. R. V. Siriwardane, M. S. Shen, E. P. Fisher, and J. Losch (2005). Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels 19, 1153–1159. https://doi.org/10.1021/ef040059h.

    Article  CAS  Google Scholar 

  46. A. Aho, N. Kumar, K. Eränen, et al. (2008). Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87, 2493–2501. https://doi.org/10.1016/j.fuel.2008.02.015.

    Article  CAS  Google Scholar 

  47. M. Nafees, M. Ikram, and S. Ali (2015). Thermal behavior and decomposition of copper sulfide nanomaterial synthesized by aqueous sol method. Dig J Nanomater Biostructures 10, 635–641.

    Google Scholar 

  48. M. Nafees, S. Ali, S. Idrees, et al. (2013). A simple microwave assists aqueous route to synthesis CuS nanoparticles and further aggregation to spherical shape. Appl Nanosci 3, 119–124. https://doi.org/10.1007/s13204-012-0113-9.

    Article  CAS  Google Scholar 

  49. T. Jüstel, D. U. Wiechert, C. Lau, et al. (2001). Optically functional zeolites: evaluation of UV and VUV stimulated photoluminescence properties of Ce3+- and Tb3+-doped zeolite X. Adv Funtional Mater 11, 105–110. https://doi.org/10.1002/1616-3028(200104)11:2%3c105::AID-ADFM105%3e3.0.CO;2-J.

    Article  Google Scholar 

  50. Y. Zhao, H. Pan, Y. Lou, et al. (2009). Plasmonic Cu 2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J Am Chem Soc 131, 4253–4261. https://doi.org/10.1021/ja805655b.

    Article  CAS  PubMed  Google Scholar 

  51. K. D. Sattler, Handbook of nanophysics (CRC Press, 2010).

    Book  Google Scholar 

  52. C. Wu, Shi J. Bin, C. J. Chen, et al. (2008). Synthesis and optical properties of CuS nanowires fabricated by electrodeposition with anodic alumina membrane. Mater Lett 62, 1074–1077. https://doi.org/10.1016/j.matlet.2007.07.046.

    Article  CAS  Google Scholar 

  53. Z. Liu, D. Xu, J. Liang, et al. (2005). Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. J Phys Chem B 109, 10699–10704. https://doi.org/10.1021/jp050332w.

    Article  CAS  PubMed  Google Scholar 

  54. S. T. Connor, C. M. Hsu, B. D. Weil, et al. (2009). Phase transformation of biphasic Cu 2S-CuInS 2 to monophasic CuInS 2 nanorods. J Am Chem Soc 131, 4962–4966. https://doi.org/10.1021/ja809901u.

    Article  CAS  PubMed  Google Scholar 

  55. Y. Yu, G. Xiong, C. Li, and F. S. Xiao (2001). Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Microporous Mesoporous Mater 46, 23–34. https://doi.org/10.1016/S1387-1811(01)00271-2.

    Article  CAS  Google Scholar 

  56. L. Zhang, J. Fang, M. Li, et al. (2014). Annealing effects on CuInS2 thin films grown on glass substrates by using pulsed laser deposition. J Korean Phys Soc 64, 410–414. https://doi.org/10.3938/jkps.64.410.

    Article  CAS  Google Scholar 

  57. A. G. Milekhin, N. A. Yeryukov, L. L. Sveshnikova, et al. (2015). Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures. Beilstein J Nanotechnol 6, 749–754. https://doi.org/10.3762/bjnano.6.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Ren, L. Li, Z. Liu, et al. (2012). The light absorption properties of Cu 2S nanowire arrays. Adv Mater Res. https://doi.org/10.4028/www.scientific.net/AMR.528.272.

    Article  Google Scholar 

Download references

Acknowledgements

To DGIP of the Universidad Autónoma de Sinaloa (UAS), for the financial support through the PROFAPI2015/100 Project, to the Consejo Nacional de Ciencia y Tecnología (CONACYT) for their support of scholarships No. 775836, and to the Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), for its support in infrastructure and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Almaral-Sánchez.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal-Perez, J.E., Flores-Valenzuela, J., Vargas-Ortíz, R.A. et al. Synthesis of Cu2S Ultrasmall Nanoparticles in Zeolite 4A Nanoreactor. J Clust Sci 34, 1563–1568 (2023). https://doi.org/10.1007/s10876-022-02330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02330-6

Keywords

Navigation