Skip to main content
Log in

Photoelectrochemical Water Splitting Over Decahedron Shaped BiVO4 Photoanode by Tuning the Experimental Parameters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present work focusses on the synthesis of structure based BiVO4 Nano particles by hydrothermal method along with a study on experimental result of the structure of the particles in the order of Nano scale to find which is suitable to photo electrode material parameters. The material is further characterised by XRD, FE-SEM, Raman, FT-IR, PL, and UV–Vis DRS along with photo electrochemical water splitting. The various crystal planes of BiVO4 were studied based on XRD and the morphological identification is obtained from FE-SEM. The unique vibrational band spectrum is arrived for the above synthesised material in the range of vibrational band 125 and 208 cm−1 by Raman. The electro chemical water splitting experiment is carried out for calculating the efficiency of photo generated e/h+ pair of the BiVO4 material with various pH conditions. Photo electrochemical impedance spectroscopy is also measured based on the above preparation and the characterisation of the material proves to have the potential for photoelectrohemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Gan, X. Lu, B. B. Rajeeva, R. Menz, Y. Tong, and Y. Zheng (2015). Chem. Electro Chem. 2, 1385.

    CAS  Google Scholar 

  2. A. Song, P. Bogdanoff, A. Esau, I. Y. Ahmet, I. Levine, T. Dittrich, T. Unold, R. Van de Krol, and S. P. Berglund (2020). ACS Appl. Mater. Interfaces 12, 13959.

    Article  CAS  PubMed  Google Scholar 

  3. J. Hu, X. Zhao, W. Chen, H. Su, and Z. Chen (2017). J. Phys. Chem. 121, 18702.

    Article  CAS  Google Scholar 

  4. B. S. Kalanoor, H. Seo, and S. S. Kalanur (2018). Mater. Sci. Energy Technol. 1, 49.

    Google Scholar 

  5. M. Pedroni, G. L. Chiarello, E. Vassallo, and E. Selli (2020). Surfaces 3, 105.

    Article  CAS  Google Scholar 

  6. K. H. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M. Li, Y. Hu, W. Mai, H. Ji, and S. Yang (2019). Nat. Commun. 10, 3687.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Y. Li, Q. Mei, Z. Liu, X. Hu, Z. Zhou, J. Huang, B. Bai, H. Liu, F. Ding, and Q. Wang (2022). Appl. Catal. B 304, 120995.

    Article  CAS  Google Scholar 

  8. F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang, and G. Zeng (2016). ACS Appl. Mater. Interfaces 8, 32887.

    Article  CAS  PubMed  Google Scholar 

  9. L. Junqi, J. Zhou, H. Hao, W. Lia, and G. Liub (2017). New J. Chem. 41, 6922.

    Article  Google Scholar 

  10. R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Hang, and C. Li (2013). Nat. Commun. 4, 1432.

    Article  PubMed  Google Scholar 

  11. S. Obregón, A. Caballero, and G. Colón (2012). Appl. Catal. B 117, 59.

    Article  Google Scholar 

  12. S. Phiankoh and R. Munprom (2018). Mater. Today 5, 9447.

    CAS  Google Scholar 

  13. R. T. Gao, X. Liu, X. Zhang, and L. Wang (2021). Nano Energy 89, 106360.

    Article  CAS  Google Scholar 

  14. R. T. Gao and L. Wang (2020). Angew. Chem. Int. Ed. 59, 6213–6218.

    Article  CAS  Google Scholar 

  15. L. Chen, R. Huang, Y. J. Ma, S. L. Luo, C. T. Au, and S. F. Yin (2013). RSC Adv. 3, 24354.

    Article  CAS  Google Scholar 

  16. Y. Li, X. Xiao, and Z. Ye (2019). Appl. Surf. Sci. 467–468, 902.

    Article  Google Scholar 

  17. X. Hu, Y. Li, X. Wei, L. Wang, H. She, J. Huang, and Q. Wang (2021). Adv Powder Mater. https://doi.org/10.1016/j.apmate.2021.11.010.

    Article  Google Scholar 

  18. V. I. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade, and A. H. Kassiba (2015). CrystEngComm 17, 3366.

    Article  CAS  Google Scholar 

  19. S. R. M. Thalluri, C. Martinez-Suarez, A. Virga, N. Russo, and G. Saracco (2013). Int. J. Chem. Eng. Appl. 4, 305.

    CAS  Google Scholar 

  20. O. F. Lopes, K. T. G. Carvalho, G. K. Macedo, V. R. De Mendonça, W. Avansi, and C. Ribeiro (2015). New J. Chem. 39, 6231.

    Article  CAS  Google Scholar 

  21. P. Pookmanee, S. Kojinok, R. Puntharod, S. Sangsrichan, and S. Phanichphant (2013). Ferroelectrics 456, 45.

    Article  CAS  Google Scholar 

  22. C. Regmi, D. Dhakal, and S. W. Lee (2017). Nanotechnology 29, 6.

    Google Scholar 

  23. V. Kavinkumar, A. Verma, S. Masilamani, S. Kumar, K. Jothivenkatachalam, and Y. P. Fu (2019). Dalton Trans. 48, 10235.

    Article  CAS  PubMed  Google Scholar 

  24. J. Zhang, F. Ren, M. Deng, and Y. Wang (2015). Phys. Chem. Chem. Phys. 17, 10218.

    Article  CAS  PubMed  Google Scholar 

  25. V. Kavinkumar, D. P. Jaihindh, A. Verma, K. Jothivenkatachalam, and Y. P. Fu (2019). New J. Chem. 43, 9170.

    Article  CAS  Google Scholar 

  26. S. Balachandran, N. Prakash, K. Thirumalai, M. Muruganandham, M. Sillanpää, and M. Swaminathan (2014). Ind. Eng. Chem. Res. 53, 8346.

    Article  CAS  Google Scholar 

  27. R. T. Gao and L. Wang (2020). Angew. Chem. Int. Ed. 23094–23099, 59.

    Google Scholar 

  28. X. Hu, Q. Wang, Y. Li, Y. Meng, L. Wang, H. She, and I. Huang (2022). J. Colloid Interface Sci. 219–228, 607.

    Google Scholar 

  29. M. F. R. Samsudin, et al. (2020). Appl. Surf. Sci. 504, 144417.

    Article  CAS  Google Scholar 

  30. Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou, P. C. Hsu, R. Zhang, Z. Liang, S. Fan, Y. Zhang, and Y. Cui (2016). Sci. Adv. 2, e1501764.

    Article  PubMed  PubMed Central  Google Scholar 

  31. K. P. S. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang, and J. S. Lee (2012). ChemSusChem 5, 10.

    Article  Google Scholar 

  32. F. F. Abdi, N. Firet, and R. van de Krol (2013). ChemCatChem 5, 490–496.

    Article  CAS  Google Scholar 

  33. R. T. Gao, S. Liu, X. Guo, R. Zhang, J. He, X. Liu, T. Nakajima, X. Zhang, and L. Wang (2021). Adv. Energy Mater. 11, 45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Mohmed Ibrahim or K. Jothivenkatachalam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiaraj, A., Ibrahim, M.M., Jothivenkatachalam, K. et al. Photoelectrochemical Water Splitting Over Decahedron Shaped BiVO4 Photoanode by Tuning the Experimental Parameters. J Clust Sci 34, 557–564 (2023). https://doi.org/10.1007/s10876-022-02236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02236-3

Keywords

Navigation