Skip to main content
Log in

Analysis and characterization of BiVO4/FeOOH and BiVO4/α-Fe2O3 nanostructures photoanodes for photoelectrochemical water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, BiVO4/FeOOH and BiVO4/Fe2O3 electrodes were prepared by electrodeposition process and studied as a photoanode for water splitting application. Firstly, Iron (III) oxide–hydroxide (FeOOH) was deposited on BiVO4 thin films, varying the deposit charge. Secondly, FeOOH was converted to Fe2O3 by an annealing treatment at 500 °C in air. Structural, optical, morphological, and electrochemical characterization was performed by XRD, UV–Vis spectroscopy, FE-SEM, and electrochemical impedance. In both cases, the monoclinic phase of BiVO4 was correctly coupled to each material. In all cases, a decrease in band gap was observed compared to pristine BiVO4 which is indicative of an enhancement in photonic absorption, FE-SEM results revealed the coalescence of the BiVO4 particles with particles in the form of nanosheets when FeOOH and Fe2O3 were coupled. This increase in the rough surface is beneficial for the increase in reactive sites since it increases the semiconductor/electrolyte contact area in addition to increasing the photon-material interaction through multiple reflections provided by these 2D structures, thus improving charge transport. In the case of BiVO4/FeOOH, it is observed that as the deposit charge density (amount of electrical charge distributed per unit area) increases, there is an improvement in the photocurrent and less recombination effects due to the fact that no peaks are seen in the cathodic direction, which is characteristic of carrier recombination. The highest current density is observed in the BiVO4–FeOOH-250 mC sample with a value close to 0.20 mA/cm2. While BiVO4/Fe2O3 films present higher photocurrents as the deposited charge increases reaching a value close to 0.35 mA/cm2, which is related to the increase in thickness and the decrease in the band gap, promoting greater light absorption. In addition, a correct band alignment for the oxygen evolution reaction was observed for both types of electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting—materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017). https://doi.org/10.1039/C6CS00306K

    Article  CAS  Google Scholar 

  2. P. Varadhan, H.-C. Fu, Y.-C. Kao, R.-H. Horng, J.-H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat Commun. 10(5282), 1–9 (2019). https://doi.org/10.1038/s41467-019-12977-x

    Article  CAS  Google Scholar 

  3. A.G. Tamirat, A.A. Dubale, W.-N. Su, H.-M. Chen, B.-J. Hwang, Sequentially surface modified hematite enables lower applied bias photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 19, 20881–20890 (2017). https://doi.org/10.1039/C7CP02890C

    Article  CAS  Google Scholar 

  4. K.R. Tolod, T. Saboo, S. Hernández, H. Guzmán, M. Castellino, R. Irani, P. Bogdanoff, F.F. Abdi, E.A. Quadrelli, N. Russo, Insights on the surface chemistry of BiVO4 photoelectrodes and the role of Al overlayers on its water oxidation activity. Appl. Catal. A: Gen. (2020). https://doi.org/10.1016/j.apcata.2020.117796

    Article  Google Scholar 

  5. S. Hu, C. Xiang, S. Haussener, A.D. Berger, N.S. Lewis, An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013). https://doi.org/10.1039/C3EE40453F

    Article  CAS  Google Scholar 

  6. T.W. Kim, K.-S. Choi, Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 343(6174), 990–994 (2014). https://doi.org/10.1126/science.1246913

    Article  CAS  Google Scholar 

  7. J. Hyun Kim, J.-W. Jang, Y. Hyun Jo, F.F. Abdi, Y. Hy Lee, R. Van de Krol, J. Sung Lee, Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat Commun (2016). https://doi.org/10.1038/ncomms13380

    Article  Google Scholar 

  8. Y. Sakamoto, Y. Noda, K. Ohno, K. Koike, K. Fujii, T.M. Suzuki, T. Morikawa, S. Nakamura, First principles calculations of surface dependent electronic structures: a study on β-FeOOH and γ-FeOOH. Phys. Chem. Chem. Phys. 21, 18468–18494 (2019). https://doi.org/10.1039/C9CP00157C

    Article  Google Scholar 

  9. F. Guo, N. Li, F.W. Fecher, N. Gasparine, C.O. Ramírez Quiroz, C. Bronnbauer, Y. Hou, V.V. Radmilović, V.R. Radmilović, E, Spiecker, K. Forberich, C. J. Brabec, A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat Commun (2015). https://doi.org/10.1038/ncomms8730

    Article  Google Scholar 

  10. R.M. Sánchez-Albores, O. Reyes-Vallejo, E. Ríos-Valdovinos, A. Fernández-Madrigal, F. Pola-Albores, C.I. Enríquez-Flores, E. Ramírez-Álvarez, J. Moreira-Acosta, Characterization and photoelectrochemical evaluation of BiVO4 films developed by thermal oxidation of metallic Bi films electrodeposited. Mater. Sci. Semicond. Process. (2023). https://doi.org/10.1016/j.mssp.2022.107184

    Article  Google Scholar 

  11. D. Arivukarasan, C.R. Dhas, R. Venkatesh, S.E. Santhoshi, A.J. Josephine, K.C.M. Gnanamalar, B. Subramanian, Template-free and cost-effective nebulizer spray-coated BiVO4 nanostructured thin films for photocatalytic applications. Appl. Phys. A. 126(86), 1–13 (2020). https://doi.org/10.1007/s00339-019-3261-x

    Article  CAS  Google Scholar 

  12. P. Makuła, M. Pacia, W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  13. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016). https://doi.org/10.1016/j.spmi.2015.10.044

    Article  CAS  Google Scholar 

  14. F. Urbach, The Long-Wavelength Edge of Photographic Sensitivity and the Electronic Absorption of Solids. Phys. Rev. 92(5), 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  15. F.N.I. Sari, S. Abdillah, J.-M. Ting, FeOOH-containing hydrated layered iron vanadate electrocatalyst for superior oxygen evolution reaction and efficient water splitting. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.129165

    Article  Google Scholar 

  16. W. Zhang, J. Ma, L. Xiong, H.-Y. Jiang, J. Tang, Well-crystallized α-FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting. ACS Appl. Energy Mater. 3(6), 5927–5936 (2020). https://doi.org/10.1021/acsaem.0c00834

    Article  CAS  Google Scholar 

  17. S. Saxena, A. Verma, K. Asha, N.K. Biswas, A. Srivastav, V.R. Satsangi, R. Shrivastav, S. Dasss, BiVO4/Fe2O3/ZnFe2O4; triple heterojunction for an enhanced PEC performance for hydrogen generation. RSC Adv. 12, 12552–12563 (2022). https://doi.org/10.1039/D2RA00900E

    Article  CAS  Google Scholar 

  18. K.P.S. Parmar, H.J. Kang, A. Bist, P. Dua, J.S. Jang, J.S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. Chemsuschem 5(10), 1926–1934 (2012). https://doi.org/10.1002/cssc.201200254

    Article  CAS  Google Scholar 

  19. A. Chelouche, T. Touam, M. Tazerout, F. Boudjouan, D. Djouadi, A. Doghmane, Low cerium doping investigation on structural and photoluminescence properties of sol-gel ZnO thin films. J. Lumin. 181, 448–454 (2017). https://doi.org/10.1016/j.jlumin.2016.09.061

    Article  CAS  Google Scholar 

  20. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: a Urbach energy and Kramers-Kronig study. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164227

    Article  Google Scholar 

  21. O. Reyes-Vallejo, J. Escorcia-García, P.J. Sebastian, Effect of complexing agent and deposition time on structural, morphological, optical and electrical properties of cuprous oxide thin films prepared by chemical bath deposition. Mater. Sci. Semicond. Process. (2022). https://doi.org/10.1016/j.mssp.2021.106242

    Article  Google Scholar 

  22. J.A. Seabold, K.-S. Choi, Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst. J. Am. Chem. Soc. 13, 2186–2192 (2012). https://doi.org/10.1021/ja209001d

    Article  CAS  Google Scholar 

  23. M. Zhou, X.W. Lou, Y. Xie, Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. NanoToday 8(6), 598–618 (2013). https://doi.org/10.1016/j.nantod.2013.12.002

    Article  CAS  Google Scholar 

  24. J. Ke, F. He, H. Wu, S. Lyu, J. Liu, B. Yang, Z. Li, Q. Zhang, J. Chen, L. Lei, Y. Hou, K. Ostrikov, Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Nano-Micro Lett. 13(24), 1–29 (2021). https://doi.org/10.1007/s40820-020-00545-8

    Article  CAS  Google Scholar 

  25. O. Reyes-Vallejo, R. Sánchez-Albores, A. Fernández-Madrigal, S. Torres-Arellano, P.J. Sebastian, Evaluation of hydrogen evolution reaction on chemical bath deposited Cu2O thin films: Effect of copper source and triethanolamine content. Int. J. of Hydrog. Energy. 47(54), 22775–22786 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.105

    Article  CAS  Google Scholar 

  26. P. Norouzzadeh, Kh. Mabhout M. M. Golzan R. Naderali, Consequence of Mn and Ni doping on structural, optical and magnetic characteristics of ZnO nanopowders: the Williamson-Hall method, the Kramers-Kronig approach and magnetic interactions. Appl. Phys. A 154, 1–13 (2020). https://doi.org/10.1007/s00339-020-3335-9

    Article  CAS  Google Scholar 

  27. Y.-l Li, Y. Liu, Y.-j Hao, X.-j Wang, R.-h Liu, F.-t Li, Fabrication of core-shell BiVO4@Fe2O3 heterojunctions for realizing photocatalytic hydrogen evolution via conduction band elevation. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2019.108379

    Article  Google Scholar 

  28. J. Krysa, M. Zlamal, S. Kment, M. Brunclikova, Z. Hubicka, TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting. Molecules 20(1), 1046–1058 (2015). https://doi.org/10.3390/molecules20011046

    Article  CAS  Google Scholar 

  29. H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S.C. Warren, Probing the photoelectrochemical properties of hematite (a-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011). https://doi.org/10.1039/C0EE00570C

    Article  CAS  Google Scholar 

  30. H. Chen, M. Lyu, G. Liu, L. Wang, Abnormal Cathodic Photocurrent Generated on an n-Type FeOOH Nanorod-Array Photoelectrode. Chem. Eur. J. 22(14), 4802–4808 (2016). https://doi.org/10.1002/chem.201504512

    Article  CAS  Google Scholar 

  31. J.A. Seabold, K.-S. Choi, Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode. Chem. Mater. 23(5), 1105–1112 (2011). https://doi.org/10.1021/cm1019469

    Article  CAS  Google Scholar 

  32. M. Li, L. Zhao, L. Guo, Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis. Int. J. Hydrog. Energy. 35(13), 7127–7133 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.026

    Article  CAS  Google Scholar 

  33. J.A.P. Singh, N. Saini, B.R. Mehta, Enhanced photoelectrochemical performance of hydrogen treated hematite thin films decorated with a thin akaganéite (b-FeOOH) layer. ChemistrySel. 2(4), 1413–1420 (2017). https://doi.org/10.1002/slct.201601356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank to Ing. Rogelio Morán Elvira, and M.S. María Luisa Ramón García for SEM and XRD analysis.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

RMSA: Writing—original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization, and corrections. ORV: Writing—review & editing, Conceptualization, Formal analysis, Data curation, Characterization, and corrections. ERV: Writing—review & editing, Visualization, Supervision, Project administration, Methodology, Formal analysis. AFM: Writing—review & editing, Visualization, Supervision, Project administration, Methodology, Formal analysis, Reagents, and materials. FPA: Writing—review & editing, Reagents and materials.

Corresponding authors

Correspondence to E. Ríos-Valdovinos or A. Fernández-Madrigal.

Ethics declarations

Competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Albores, R.M., Reyes-Vallejo, O., Ríos-Valdovinos, E. et al. Analysis and characterization of BiVO4/FeOOH and BiVO4/α-Fe2O3 nanostructures photoanodes for photoelectrochemical water splitting. J Mater Sci: Mater Electron 34, 1001 (2023). https://doi.org/10.1007/s10854-023-10382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10382-1

Navigation