Skip to main content
Log in

Bismuth vanadate thin films for efficient photoelectrochemical water splitting

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Monoclinic bismuth vanadate has attracted much attention as one of the efficient photoanode materials that can harvest a wide range of visible light to split water efficiently. In this study, we report the preparation of nanoporous BiVO4 via wet chemical approach coupled with dip-coating technique. The monoclinic scheelite phase of BiVO4 is revealed by X-ray diffraction (XRD). Characterisation techniques like Raman spectroscopy, diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) have been analysed and confirmed the formation of BiVO4 layers on FTO. Photoelectrochemical studies of BiVO4 thin films have been performed in a three-electrode potentiostat system, illuminated under visible light-emitting diode (LED) source of intensity 100 mW/cm2. The optimised 10 layered BiVO4 thin film with average thickness of ~ 300 nm shows an optimum photocurrent density of ~ 0.67 mA/cm2 at 1.23 V vs RHE and photoconversion efficiency of 0.4% at 1.23 V vs RHE as compared with different layered BVO photoanodes. The measurements of flat band potential and confirmation of n-type behaviour of BiVO4 semiconductors were carried out by Mott–Schottky analysis. Electrochemical impedance spectroscopy (EIS) study clearly indicate the less charge transfer resistance and high hole transfer mobility of optimised BiVO4 photoanode films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. van de Krol, M. Grätzel (eds.), Photoelectrochemical Hydrogen Production, 1st edn. (Springer, New York, 2012)

    Google Scholar 

  2. W. Guo, D. Tang, O. Mabayoje, B.R. Wygant, P. Xiao, Y. Zhang, C.B. Mullins, J. Electrochem. Soc. 164(2), H119–H125 (2017)

    Article  CAS  Google Scholar 

  3. A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121(49), 11459–11467 (1999)

    Article  CAS  Google Scholar 

  4. S. Sun, W. Wang, L. Zhou, H. Xu, Ind. Eng. Chem. Res. 48(4), 1735–1739 (2009)

    Article  CAS  Google Scholar 

  5. J.A. Seabold, K. Zhu, N.R. Neale, Physical chemistry. Chemical Physics 16(3), 1121–1131 (2014)

    CAS  Google Scholar 

  6. N. Manhe, S.E. Renfrew, B.D. McCloskey, S.A. Freunberger, Angew. Chem. Int. Ed. 57(19), 5529–5533 (2018)

    Article  Google Scholar 

  7. Z.M. Bhat, R. Thimmappa, M.C. Devendrachari, A.R. Kottaichamy, S.P. Shafi, S. Varhade, M. Gautam, M.O. Thotiyl, J. Phys. Chem. Lett. 9(2), 388–392 (2018)

    Article  Google Scholar 

  8. E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi, A. Vioux, S.A. Freunberger, F. Favier, O. Fontaine, Nat. Mater. 16, 446–453 (2017)

    Article  CAS  Google Scholar 

  9. R. Thimmappa, B. Paswan, P. Gaikwad, M.C. Devendrachari, H.M.N. Kotresh, R.R. Mohan, J.P. Alias, M.O. Thotiyl, J. Phys. Chem. C 119(25), 14010–14016 (2015)

    Article  CAS  Google Scholar 

  10. E. Alarcón-Lladó, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey, J.W. Ager, Physical chemistry. Chem. Phys. 16(4), 1651–1657 (2014)

    Google Scholar 

  11. A. Yengantiwar, S. Palanivel, P.S. Archana, Y. Ma, S. Pan, A. Gupta, J. Phys. Chem. C 121(11), 5914–5924 (2017)

    Article  CAS  Google Scholar 

  12. S.W. Hwang, J.U. Kim, J.H. Baek, S.S. Kalanur, H.S. Jung, H. Seo, I.S. Cho, J. Alloys Compd. 785, 1245–1252 (2019)

    Article  CAS  Google Scholar 

  13. G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong, J.Z. Zhang, V. Lordi, C. Leao, Y. Li, J. Phys. Chem. C 117(21), 10957–10964 (2013)

    Article  CAS  Google Scholar 

  14. A. Tayyebi, T. Soltani, B.K. Lee, J. Colloid Interface Sci. 534, 37–46 (2018)

    Article  Google Scholar 

  15. J. Yu, A. Kudo, Adv. Funct. Mater. 16(16), 2163–2169 (2006)

    Article  CAS  Google Scholar 

  16. M. Lamers, S. Fiechter, D. Friedrich, F. Abdi, R. van de Krol, J. Mater. Chem. A 6, 18694–18700 (2018)

    Article  CAS  Google Scholar 

  17. S. Bhat, S. Lee, J. Suh, S.P. Hong, H. Jang, Appl. Sci. 8(10), 1765 (2018)

    Article  Google Scholar 

  18. L. Zhang, X. Ye, M. Boloor, A. Poletayev, N.A. Melosh, W.C. Chueh, Energy Environ. Sci. 9(6), 2044–2052 (2016)

    Article  Google Scholar 

  19. L. Li, J. Li, J. Bai, Q. Zeng, L. Xia, , Y. Zhang, S. Chen, Q. Xu, B. Zhou, Nanoscale, 10, 18378–18386 (2018)

    Article  CAS  Google Scholar 

  20. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Mater. Technol. 34(7), 403–414 (2019)

    Article  CAS  Google Scholar 

  21. S. Thombare, A. Bhosale, S. Kokare, A. Yengantiwar, AIP Conf. Proc. 2142, 080014-1–080014-6 (2019)

    Google Scholar 

  22. X. Zhang, X. Wang, D. Wang, J. Ye, ACS Appl. Mater. Interfaces, 5631 11(6), 5623 (2018)

  23. A. Escobedo-Morales, I.I. Ruiz-Lopez, M. deL Ruiz-Peralta, L. Tepech-Carrillo, M. Sanchez-Cantu, J.E. Moreno-Orea, Heliyon 5, e01505 (2019)

    Article  CAS  Google Scholar 

  24. M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, A. Ray, Nanoscale 8(4), 2293–2303 (2016)

    Article  CAS  Google Scholar 

  25. S.M. Thalluri, R.M. Rojas, O.D. Rivera, S. Hernandez, N. Russo, S.E. Rodil, Phys. Chem. Chem. Phys. 17(27), 17821–17827 (2015)

  26. B.C. Xiao, L.Y. Lin, J.Y. Hong, H.S. Lin, Y.T. Song, RSC Adv. 7(13), 7547–7554 (2017)

    Article  CAS  Google Scholar 

  27. M. Tayebi, A. Tayyebi, B.K. Lee, Catal. Today 328, 35–42 (2018)

    Article  Google Scholar 

  28. Q. Jia, K. Iwashina, A. Kudo, Proc. Natl. Acad. Sci. 109(29), 11564–11569 (2012)

    Article  CAS  Google Scholar 

  29. Z. Li, P. Luan, X. Zhang, Y. Qu, F. Raziq, J. Wang, L. Jing, Nano Res. 10, 2321–2331 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors have acknowledged other institutes’ expert faculties from the College of Engineering Pune (COEP), National Chemical Laboratory (NCL), Pune, IISER Pune and Department of Physics, Savitribai Phule Pune University, to use their instrumentation facilities for characterizations of samples. Also, the authors acknowledged the full support of research facilities procured under DBT STAR College status and College of Excellence (UGC-CE) project activities in Department of Physics, Fergusson College (Autonomous), Pune.

Funding

AY received financial support of ‘Young Scientist Travel Grant’ for participation in the conference ICFPAM2019, Penang, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Yengantiwar.

Electronic supplementary material

ESM 1

(DOCX 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Doiphode, P., Bhorade, O. et al. Bismuth vanadate thin films for efficient photoelectrochemical water splitting. emergent mater. 3, 187–194 (2020). https://doi.org/10.1007/s42247-020-00093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00093-2

Keywords

Navigation